Monte Perdido

Monte Perdido

sábado, 7 de septiembre de 2024

Los ciclos Dansgaard-Oeschger II

Condiciones para los ciclos Dansgaard-Oeschger

Algunos autores disputan la existencia de un ciclo D-O con espaciamiento regular basándose en que la distribución de las oscilaciones no es significativamente distinta del azar. Está la dificultad obvia de datar correctamente con suficiente precisión oscilaciones que tuvieron lugar hace tanto tiempo, y es significativo que las oscilaciones más recientes son las que muestran una mejor periodicidad. Además el registro de hielo que muestra una periodicidad más robusta es GISP2, el testigo de hielo de Groenlandia con mejor resolución temporal, puesto que permite contar las capas anuales de nieve. Finalmente las abruptas oscilaciones climáticas que constituyen un ciclo D-O deben ser definidas apropiadamente. Una oscilación D-O requiere varias condiciones identificatorias. Es altamente asimétrica, con un rápido calentamiento en unas pocas décadas y un lento enfriamiento de al menos 200 años, seguido de un rápido enfriamiento de al menos 200 años más con una duración mínima de 400 años. Ha de coincidir con un pico similar en los niveles de metano de similar amplitud y duración. Y es precedido de un calentamiento Antártico previo que alcanza su máximo unos 220 años después del pico de calentamiento en Groenlandia. La mayoría de los análisis matemáticos fallan en incluir estas señas y consideran el pico número 9 como una oscilación D-O cuando claramente se trata de un tipo diferente de calentamiento abrupto (ver figuras 1, 9 y 10b de la primera parte ). El calentamiento abrupto 9 es un suceso de calentamiento situado fuera de lugar, y si se le elimina de los análisis la robustez de la ciclicidad aumenta considerablemente.

Se desconoce qué podría causar la periodicidad observada de 1470 años. Es ciertamente uno de los grandes misterios de la paleoclimatología. Las explicaciones que se proponen se dividen en dos clases: forzamientos internos, como las oscilaciones de la circulación oceánica o la dinámica de los mantos de hielo, y forzamientos externos como variaciones en el Sol o en los ciclos de las órbitas planetarias. Pero cada explicación tiene sus dificultades. Las explicaciones de forzamiento interno tienen un problema para explicar cómo se puede conseguir una periodicidad tan precisa dada la gran variabilidad intrínseca de los fenómenos implicados y dada la variabilidad en la duración de las oscilaciones D-O. Los ciclos solares de ~1500 años son desconocidos y los ciclos solares conocidos como el ciclo de manchas solares de 11,6 años muestran una variabilidad de ±14%, mucho mayor que la del ciclo de 1470 años. Ciclos orbitales de ~1500 años no gozan de amplia aceptación y el ciclo lunar más cercano conocido es de ~1800 años.

Puesto que los ciclos D-O como se han definido previamente son una característica glacial, parecen estar influenciados por las temperaturas globales y por lo tanto por los cambios orbitales. Ciertamente los ciclos D-O se ven suprimidos en los periodos que siguen a la máxima oblicuidad hace 90.000, 50.000 y 10.000 años y en los que siguen a la mínima oblicuidad hace 30.000 años (figura 1). Por lo que parece, los abruptos cambios D-O no pueden tener lugar cuando el mundo se encuentra en condiciones interglaciales o en condiciones plenamente glaciales como las que se dieron durante el Último Máximo Glacial.

 

Los ciclos Dansgaard-Oeschger
Figura 1. Las oscilaciones D-O y el ciclo de oblicuidad. Temperaturas de GISP2 en Groenlandia en rojo sobre una periodicidad de 1470 años en azul. El ciclo de oblicuidad se muestra en púrpura, ajustado en amplitud a las variaciones de temperatura por propósito ilustrativo. Los números indican oscilaciones D-O que presentan perfil de temperaturas asimétrico, incremento de metano, y calentamiento Antártico previo. Los puntos azules indican cambios abruptos que no muestran todas estas características. Los periodos de supresión por calor y por frío se muestran en rojo y azul respectivamente. MIS: Estadío isotópico marino. LGM: Último Máximo Glacial. BA: Bølling-Allerød. YD: Dryas Reciente.

La distribución irregular de los ciclos D-O durante los pasados 100.000 años extrayendo una señal de 1470 años de los datos indicadores de temperatura de GISP2 utilizando el análisis de frecuencia temporal a través del filtrado de armónicos. La señal resultante (figura 2A) muestra cuatro periodos de mayor amplitud separados por mínimos a 80.000, 65.000, 50.000, 20.000 y 10.000 años. Cada periodo de mayor amplitud corresponde a un periodo de ciclos D-O. Entonces notaron una estrecha relación entre la señal de 1470 años y las variaciones de la masa continental de hielo, como se registran en las variaciones del nivel del mar. Cada uno de los cinco mínimos de la señal de 1470 años corresponde a un punto de inflexión en la variación del nivel del mar, y cuatro de los cinco tienen lugar cuando los niveles del mar están por encima de los -45 m o debajo de los -90 m con respecto al nivel presente (figura 2B). El quinto mínimo hace 50.000 años coincide con un máximo de oblicuidad.

 

oscilaciones D-O y los cambios en el nivel del mar.
Figura 2. Las oscilaciones D-O y los cambios en el nivel del mar. (A) Arriba: cambios temporales del componente de la señal de 1470 años en el registro del indicador de temperatura estimado mediante un algoritmo de filtrado de armónicos usando una ventana deslizante rectangular de anchura 4 x 1470 años. Abajo: Registro del indicador de temperatura de Groenlandia GISP2 con los números de los sucesos D-O. (B) Amplitud de la señal de 1470 años suavizada 2000 años (línea discontinua) y nivel del mar (rojo). La amplitud se incrementa bruscamente cuando el nivel del mar cae por debajo de -45 m y se reduce cuando el nivel del mar cae por debajo de -90 m. Los mínimos pronunciados de amplitud coinciden con mínimos o máximos locales en el nivel del mar (flechas). 

Puesto que las condiciones necesarias para los ciclos D-O pueden ser desconectadas, por ejemplo durante el Último Máximo Glacial, y cuando se reinician el ciclo aún mantiene el mismo espaciamiento de 1470 años, esto es un fuerte indicio de que el interruptor de los ciclos D-O es externo, y su reloj hace tictac todo el tiempo. Las condiciones adecuadas requieren la acumulación de extensos mantos de hielo sobre los continentes del Norte que provocan una caída del nivel del mar de al menos 45 metros. Una vez que esto sucede el balancín bipolar debe posicionarse para calentar la Antártida y enfriar las regiones polares del Norte. Estas condiciones extienden la cubierta de hielo marino sobre amplias regiones de los mares nórdicos y el Atlántico Norte y producen un incremento de la descarga de icebergs. Entonces el siguiente tic del reloj disparará un ciclo D-O. Cuando quiera que estas condiciones sean reseteadas puede dispararse un nuevo ciclo D-O. Una alta insolación del Norte por un máximo de oblicuidad evita que estas condiciones tengan lugar, lo mismo que un enfriamiento profundo que reduzca los niveles del mar por debajo de -90 m y produzca demasiado hielo.

Teoría consenso de los ciclos Dansgaard-Oeschger y retos

Desde 1985 en adelante el paleoclimatólogo W. Broecker estableció la teoría consenso o dominante sobre los ciclos D-O. Se la conoce como la hipótesis del "Oscilador Salino", y se basa en cambios oscilatorios de la Circulación de Retorno Meridional Atlántica, o AMOC (Atlantic Meridional Overturning Circulation), en respuesta a pulsos de agua dulce debidos al agua de deshielo (MWP, melt water pulses) que se almacenan y se liberan periódicamente de los mantos de hielo (figura 3).

La AMOC está controlada por las aguas superficiales calientes de la Corriente Noratlántica que se vuelven más salinas por la evaporación que traslada agua dulce fuera de la cuenca Atlántica, y aún más salinas y frías a través de la evaporación en las regiones Subárticas, hasta que se vuelven lo suficientemente densas para hundirse y retornar hacia el Sur convertidas en la fría componente de agua profunda del Atlántico Norte (NADW, North Atlantic Deep Water). La intensidad de la NADW determina el estado de la AMOC. El término Circulación Termohalina (THC), introduce confusión porque se refiere solo a los efectos térmicos y salinos de la circulación, ignorando los efectos del viento y las mareas que también están incluidos en la AMOC, y puesto que son difíciles de separar es mejor referirse a la AMOC. El Transportador Global y la MOC (Circulación de Retorno Meridional global) son términos intercambiables.

La NADW fluye hacia el Sur a lo largo del fondo del Océano Atlántico exportando el exceso de sal que se ha creado, resultando en una reducción gradual de la salinidad superficial del Atlántico Norte con el tiempo. Además el calor tropical transferido a las altas latitudes del Atlántico Norte provoca la fusión del hielo y MWP que reducen aún más la salinidad del agua. Si las aguas superficiales en los sitios de formación de agua profunda se vuelven demasiado dulces la AMOC se debilita o se apaga porque las aguas superficiales no son lo suficientemente densas para hundirse. Una vez que la AMOC se ha debilitado lo suficiente o se ha apagado, la sal se vuelve a acumular de nuevo en el Atlántico Norte debido a la ausencia de exportación por la NADW. De acuerdo a esta teoría, condiciones de debilidad de la AMOC están asociadas a los estadíos fríos (figura 4).

 

hipótesis del Oscilador Salino
Figura 3. La hipótesis del Oscilador Salino. Izquierda, Durante los interestadíos templados una fuerte AMOC transporta calor hacia el Norte causando que los mantos de hielo alrededor del Atlántico Norte se fundan, reduciendo gradualmente la salinidad del agua superficial hasta que deja de hundirse y cesa la formación de aguas profundas deteniendo la NADW. Finalmente la salinidad superficial se reduce lo suficiente para debilitar la AMOC cambiando el clima a un estadío frío. Derecha, Durante los estadíos, condiciones más frías en el Atlántico Norte reducen el aporte de agua de deshielo de los mantos de hielo permitiendo un incremento en la salinidad superficial que con el tiempo provoca que el agua se hunda reiniciando la NADW y haciendo que la AMOC se fortalezca, retornando el sistema climático a un interestadío.

Como la sal continúa acumulándose en el Atlántico Norte durante los periodos de formación reducida de la NADW, finalmente las aguas superficiales en los sitios clave de formación de aguas profundas se vuelven lo suficientemente densas y salinas como para hundirse de nuevo, reiniciando la AMOC y causando un calentamiento abrupto en las altas latitudes del Atlántico Norte, disparando la fase caliente de un ciclo D-O.

 

Mecanismos de la hipótesis del Oscilador Salino

Figura 4. Mecanismos de la hipótesis del Oscilador Salino. (a) Durante los interestadíos cálidos, cuando la AMOC es más fuerte, el incremento en el transporte de calor oceánico hacia el Norte da lugar a condiciones más cálidas en el Atlántico Norte. Dichas condiciones cálidas provocan mayor fusión en los mantos de hielo que rodean el Atlántico Norte, reduciendo gradualmente la salinidad de las aguas superficiales. Finalmente la salinidad superficial se reduce lo suficiente para debilitar la AMOC, cambiando el clima hacia un estadío frío. (b) Durante los estadíos, las condiciones más frías en el Atlántico Norte reducen el aporte de agua de deshielo de los mantos de hielo, permitiendo un incremento en la salinidad superficial que finalmente provoca un fortalecimiento de la AMOC, retornando el sistema climático a un interestadío. (c) Perfil del Atlántico entre 30°S y 90°N mostrando la cresta submarina entre Groenlandia y Escocia. Las condiciones del interestadío muestran una fuerte AMOC capaz de cruzar la cresta. Las condiciones del estadío muestran una AMOC debilitada que se gira más al Sur. Durante los sucesos Heinrich la AMOC colapsa  AMOC: Corriente de Retorno Meridional Atlántica. NAC: Corriente NorAtlántica. NADW: Aguas Profundas del Atlántico Norte. AABC: Corriente de Fondo Antártica.

Varios estudios han sugerido que solo hace falta una pequeña reducción en la salinidad superficial marina para alterar la velocidad de formación de la NADW, hasta el punto de que hay cierta preocuparon de que un incremento en el ciclo hidrológico debido al presente calentamiento global pudiera reducir la salinidad del Atlántico Norte, conduciendo al apagado de la AMOC causando un abrupto enfriamiento en un futuro próximo. Poner enlace  sin embargo olvidar que antes de la transición del Holoceno Medio, hace alrededor de 5.000 años, la región del Atlántico Norte era más cálida y generalmente más húmeda que en el presente, cuando el Sahara tenía un ambiente más húmedo de sabana, y la AMOC no se paró. Además como se ha visto anteriormente estas paradas parece que quedan inhibidas en los interestadíos, para condiciones de nivel del mar por encima de los -45 m por encima del nivel actual.

Un elemento en contra bastante potente es que la hipótesis del Oscilador Salino no tiene una explicación particular para el espaciamiento regular de los ciclos D-O según un ciclo de 1470 años. El espaciamiento debe provenir de los retrasos intrínsecos en la acumulación de salinidad y agua de deshielo, y de los retrasos en la respuesta de las corrientes oceánicas para que el ciclo prosiga. Como se ha explicado de manera sencilla, el espaciamiento de las oscilaciones de un péndulo dependen de su longitud, pero la variabilidad climática está muy lejos de la regularidad de la física sencilla.

En los últimos años esta visión de consenso de la formación de los ciclos D-O a través de una oscilación salina está siendo atacada desde distintos frentes. Mientras varios estudios han cuestionado que los MWP tuvieran lugar en los intervalos de tiempo esperados, otros indican que la AMOC es mucho más estable de lo que requiere la teoría y que incluso MWP extremos no podrían desestabilizarla de forma persistente.

Durante los estadíos el flujo de agua cálida hacia el Atlántico Norte y el Mar de noruega no cesa. En su lugar durante los fríos estadíos el agua cálida penetra en el Ártico bajo el hielo marino a un nivel subsuperficial y debido a ello, en vez de ceder su calor a la atmósfera calienta las aguas subsuperficiales por debajo de una doble capa aislante de aguas frías formada por agua superficial dulce y una capa fría y muy salina denominada haloclina. Así mientras la atmósfera se enfría y el hielo marino aumenta, el calor oceánico se acumula al nivel subsuperficial y no se produce agua fría en el fondo.

Explicación del funcionamiento del ciclo Dansgaard-Oeschger

De acuerdo a la evidencia disponible y a las nuevas teorías, y comenzando el ciclo en el punto durante el estadío cuando la Antártida comienza a calentarse, el balancín bipolar se encuentra en posición de calentar la Antártida y enfriar las regiones polares del Norte. La AMOC entonces se debilita y transmite menos calor hacia el Atlántico Norte. Al enfriarse el Atlántico Norte y el Ártico, los mantos de hielo se expanden y el hielo marino aumenta, alcanzando más al Sur (figura 5a).

Al calentarse la Antártida y enfriarse el Ártico, la cantidad de aguas cálidas transmitidas hacia el Norte empieza a aumentar debido al incremento del gradiente térmico ecuador-polo. Estas aguas cálidas producen un incremento de la descarga de icebergs que llevan IRD a los sedimentos oceánicos, pero las aguas cálidas fracasan en calentar las latitudes altas porque en lugar de ventilar el calor a la atmósfera se sumergen por debajo del hielo marino donde forman una capa aislada por la haloclina (figura 5b).

Cada 6.100 años el calentamiento Antártico y el enfriamiento Ártico se ven aumentados y prolongados. El gradiente de temperatura se vuelve mucho mayor y se mueve mucha más agua cálida hacia el Norte, donde se ha formado mucho más hielo, así que la descarga de icebergs es mucho mayor, produciendo un suceso Heinrich (figura 5d).

 

Mecanismos del ciclo Dansgaard-Oeschger
Figura 5. Mecanismos del ciclo D-O. (a) Al comienzo del estadío el Ártico se está enfriando y se reduce el agua cálida superficial (naranja). (b) Al final del estadío el enfriamiento Ártico es máximo, la Antártida se está calentando y hay un aumento en la Corriente Noratlántica cálida que produce un incremento en la descarga de icebergs cargados de escombros (IRD). En el Mar de noruega las aguas cálidas se hunden bajo el hielo evitando el calentamiento. De vez en cuando estas condiciones se incrementan produciendo un suceso Heinrich. (c) Se produce de forma abrupta un interestadío cuando de forma explosiva el agua cálida asciende y funde el hielo marino, transfiriendo el calor a la atmósfera. (d) Modelo de las condiciones durante un suceso Heinrich. Obsérvese el enfriamiento del Atlántico Norte. (e) Modelo de las condiciones durante un calentamiento abrupto D-O.

Cada 1470 (± 120) años las aguas cálidas subsuperficiales de altas latitudes Norte ascienden a la superficie y calientan abruptamente la atmósfera (figura 5c, e), iniciando el interestadío de Groenlandia. Este calentamiento invierte el balancín bipolar, de forma que la región Antártica comienza a enfriarse tras unos 200 años. Al enfriarse las aguas cálidas en el Norte se hunden y forman la NADW, y las altas latitudes también se enfrían. Una vez que el hielo marino vuelve a crecer y se forma la haloclina, de nuevo aísla las aguas cálidas de la atmósfera y la temperatura cae poniendo fin al interestadío. El profundo enfriamiento de un nuevo estadío invierte de nuevo el balancín bipolar, reiniciando el ciclo.

Existe evidencia en los sedimentos marinos noruegos que han preservado la estratificación de temperaturas del mar que demuestra que cambios en la temperatura del mar y en su estratificación preceden a los abruptos cambios atmosféricos. Durante la fase de estadío los foraminíferos del plancton registran la temperatura del agua en, o justo debajo de, la haloclina. Al progresar la fase de estadío, los foraminíferos planctónicos muestran un incremento de la temperatura (figura 6) que es consistente con la llegada continua de agua del Atlántico relativamente cálida y salina por debajo de la haloclina. Sin posibilidad de ventilar el calor a la atmósfera debido a la cubierta de hielo marino, la reducción de la densidad de las aguas subsuperficiales debilita la estratificación que permite que existan la haloclina y la cubierta de hielo marino. La transición al interestadío cálido en Groenlandia tiene lugar cuando colapsa la estratificación, y en ese punto el calor de la capa subsuperficial se mezcla rápidamente hacia la superficie, fundiendo la cubierta de hielo marino (figura 7). Esta repentina mezcla hacia arriba es registrada en el indicador de los foraminíferos planctónicos como un calentamiento abrupto de la temperatura del mar que precede al calentamiento atmosférico (figura 6).

 

Temperatura subsuperficial en el mar de Noruega
Figura 6. Temperatura subsuperficial en el mar de Noruega. Registros de indicadores de temperatura que cubren el periodo de hace 41.000 a 31.000 años. Panel superior en azul, indicador δ18O NGRIP de las temperaturas en Groenlandia. Panel inferior en rojo, reconstrucción de la temperatura superficial marina (SST) basada en el ensamblado de foraminíferos planctónicos.

Modelo de reorganización vertical del mar de Noruega

Figura 7. Modelo de reorganización vertical del mar de Noruega. Esquema mostrando las condiciones invernales en el Atlántico Norte y del mar de Noruega durante (izquierda) el típico periodo estadial frío y (derecha) periodo interestadial cálido de un ciclo D-O. Los paneles A y C muestran secciones Norte-Sur del Atlántico Norte durante las condiciones de estadío e interestadío respectivamente. Los paneles B y D muestran secciones Este-Oeste del mar de Noruega durante las condiciones de estadío e interestadío respectivamente. Durante los periodos de estadío el agua cálida que llega del Atlántico es estratificada debajo de capas aislantes de hielo marino, agua dulce fría y agua fría salina (A y B). En los periodos de interestadío la estratificación colapsa y el agua cálida del Atlántico alcanza la superficie calentando la atmósfera (C y D). 

Ciclos lunisolares de marea como explicación del mecanismo de disparo de Dansgaard-Oeschger

las explicaciones del espaciamiento regular del ciclo D-O resultan insuficientes. Los factores internos como los cambios en las corrientes oceánicas o la acumulación de hielo están influenciados por demasiados factores variables como el viento y las temperaturas como para esperar que sean capaces de producir tal regularidad. Lo mismo pasa con la reorganización vertical de las aguas estratificadas del mar de Noruega. Durante los sucesos Heinrich tanto el tiempo como la cantidad de agua cálida subsuperficial cálida que se acumula es mucho mayor, y sin embargo el espaciamiento se mantiene. Con respecto a los factores externos, el Sol parece problemático. No hay indicación de un ciclo solar de ~1500 años en los registros de indicadores solares, y los cambios en la luminosidad solar no son lo suficientemente precisos (el ciclo de manchas solares muestra un 14% de variabilidad en su espaciamiento) ni intensos para explicar los cambios observados.

Hay muy pocos científicos que defiendan las mareas como origen del espaciamiento de los ciclos D-O, Por absurda que suene inicialmente, la teoría de las mareas, tiene una capacidad única para explicar algunas características de la evidencia disponible sobre el funcionamiento de los ciclos D-O.

Como con cualquier sospechoso, tenemos que analizar si tiene los medios y la oportunidad. ¿Son las mareas capaces de producir el efecto requerido? Las mareas normales tienen ya un fuerte efecto en la mezcla vertical del agua oceánica. Se calcula el efecto de mezcla vertical anual de las mareas en 4 Teravatios, frente a los 2 TW del viento. Puesto que las aguas oceánicas están estratificadas por temperatura, el mezclado vertical es uno de los principales factores en los cambios de temperatura del océano. Además las mareas también tienen lugar bajo el hielo marino, donde son el único factor que afecta al mezclado vertical.

Las mareas también aumentan su potencia de forma no lineal según los ciclos, el principal de los cuales es el ciclo nodal de 18,6 años. Puesto que la órbita de la Luna tiene una inclinación de ~5° con respecto a la órbita de la Tierra, los nodos son los puntos en los cuales la Luna cruza el plano de la eclíptica, y la línea que une ambos nodos lleva a cabo una rotación completa cada 18,6 años. Esto produce ciclos de alineamiento con diferentes periodicidades, que ocurren cuando la Tierra está en perigeo, y la Luna está en perigeo o apogeo al mismo tiempo que está en uno de los nodos donde la órbita de la Luna cruza la eclíptica, y con la Tierra, la Luna y el Sol alineados. Incluso más importante que estos ciclos de alineamiento, la fuerza de las mareas cambia con los ritmos armónicos de las frecuencias de los ciclos de marea más largos. Estos ciclos actúan en una escala centenaria y a diferencia de los ciclos de alineamiento producen mareas muy altas sobre periodos de meses y años. Estos ciclos se han asociado a periodos fríos durante periodos históricos.

 

Temporalidad del forzamiento de las mareas lunisolares desde 1600 dC.
Figura 8. Temporalidad del forzamiento de las mareas lunisolares desde 1600 dC. Cada suceso, indicado por una línea vertical, da una medida del forzamiento en términos de la velocidad angular de la Luna, en grados de arco por día, en el momento del suceso. Los arcos conectan los sucesos de cada secuencia prominente de mareas de 18,03 años. También se indican las fechas de los episodios fríos observados en los datos climáticos. Los máximos centenarios están marcados con letras. Los sucesos climáticos de las secuencias dominantes entre 1700 y 1974 tienen lugar a intervalos de cerca de 90 años.

La secuencia de marea dominante más fuerte de los últimos 200 años tuvo lugar el 8 de Enero de 1974 (figura 8). Por lo tanto podemos comprobar si algo inusual tuvo lugar alrededor de esas fechas con las mareas. De acuerdo a los registros históricos las costas Oeste de Norteamérica y Europa se vieron afectadas por mareas inusualmente grandes en Enero de 1974. En Europa Occidental las mareas asociadas a tormentas causaron inundaciones severas en Irlanda donde la gravedad de los daños en la inundación del 11 al 12 de Enero fue mayor que en el anterior huracán "Debbie", causando el peor desastre en la historia para la compañía eléctrica nacional ESB de Irlanda. Los granjeros que recogían algas en Crushoa, al Sur de Galway notaron un extraño fenómeno en la tarde del 11. La marea que subía se invirtió durante cerca de una hora para volver luego con una fuerza y un vigor no discernibles en su anterior movimiento.

En los Estados Unidos, Fergus Wood, un investigador de la Administración Nacional Atmosférica y Oceánica (NOAA), dio aviso público el 26 de Diciembre de 1973 de que se acercaba el alineamiento muy cercano perigeo-alineamiento del 8 de Enero de 1974, evitándose los daños costeros mediante sacos de arena, terraplenes y otras medidas de precaución. El periódico Los Angeles Times en su edición del Miércoles 9 de Enero de 1974  informaba: "Olas gigantes golpean la costa Sur erosionando las casas de la playa. Barreras de sacos de arena se levantan para defenderse del asalto de la marea". El siguiente alineamiento el 9 de Febrero también causó inundaciones de marea a lo largo de la costa Sur de Inglaterra.

En Fort Denison, en la bahía de Sidney, Australia, el análisis de los niveles de agua desde 1914 a 2009 muestran que la anomalía de marea más grande registrada tuvo lugar el 26 de Mayo de 1974 durante la tormenta oceánica más significativa del registro histórico. Durante el periodo registrado, el 96,8% de las anomalías caen dentro de una banda entre -10 cm y +20 cm. La anomalía de 1974 midió 59 cm.

Debajo de la barrera de hielo de Ross en la Antártida entre Diciembre de 1973 y Febrero de 1974, se detectaron durante ese tiempo mareas de 2 metros bajo la capa de hielo por gravimetría.

Por lo tanto está claro que con una periodicidad centenaria tienen lugar mareas inusualmente fuertes con capacidad para ejercer una poderosa mezcla vertical incluso debajo del hielo marino, proporcionando un mecanismo para disparar un abrupto calentamiento interestadial Dansgaard-Oeschger. Las mareas incrementan la producción de icebergs, pero las mareas también son sensibles a los niveles del mar y por ello algunos investigadores han mostrado a través de modelos que reproducen las mareas actuales, que con las condiciones glaciales de bajo nivel del mar en algunos lugares del mundo se producirían mareas mucho mayores. Estas áreas se localizan principalmente en la región del Atlántico Norte (figura 9), por lo que los autores proponen un origen de mareas para los sucesos Heinrich. Puesto que las olas de las mareas se propagan, estas mega mareas del periodo glacial hubieran afectado al área del Atlántico Norte – mar de Noruega donde tienen lugar los calentamientos abruptos de los ciclos D-O.

 

Amplitud de las mareas en la Edad de Hielo
Figura 9. Amplitud de las mareas en la Edad de Hielo. La amplitud de marea (m) de la marea principal semidiurna M2 en (a) el tiempo presente y (b) Hace 23.000 años un modelo hidro-dinámico acoplado a una predicción de la variación del nivel del mar auto-consistente gravitacionalmente (y por ello variable geográficamente). Entre las áreas con mareas más fuertes están las que producen descargas de icebergs durante los sucesos Heinrich (HE círculo negro), y el área del mar de Noruega, donde se originan los calentamientos abruptos D-O (círculo azul oscuro).

Hemos visto que los ciclos de mareas lunisolares tuvieron la capacidad de haber producido megamareas durante el periodo glacial, suficientemente fuertes para producir una intensa mezcla vertical del agua, y por ello capaces de explicar el disparo de los ciclos D-O. La hipótesis de mareas es muy consistente con los requerimientos conocidos para los ciclos D-O: Condiciones frías que favorecen una extensa cubierta de hielo marino, estratificación de la temperatura del agua con suficiente diferencial, niveles del mar suficientemente bajos para que se produzcan enormes mareas, pero no tan bajos como para que la cubierta de hielo sea demasiado espesa y estable y el efecto de marea no sea suficientemente fuerte.

La hipótesis de mareas parece tener los medios, ¿tiene la oportunidad? No se conoce a partir de los datos un ciclo de marea claro de 1470 años, sin embargo se puede deducir uno de la teoría. Ya hemos visto que la precesión nodal tiene lugar cada 18,6 años. La precesión apsidal, o ciclo de perigeo es la rotación de la órbita elíptica de la Luna alrededor de la Tierra cada 8,85 años. Por cada ciclo nodal que tiene lugar (18,6 años), se suceden dos ciclos de perigeo (17,7 años). Estos números están tan próximos, que ambos ciclos producen interferencia máxima cada 366 años, cuando tienen lugar mareas mayores. El  ciclo de 1470 años podría resultar de un factor de 4 sobre el ritmo armónico de 366 años, reflejando quizá el requerimiento de que la máxima acción de marea tenga lugar en una ventana relativamente estrecha durante el verano, cuando el hielo marino es más susceptible a la perturbación por las mareas.

Los ciclos de mareas lunisolares constituyen por tanto una explicación viable y posible para el espaciamiento de 1470 años del abrupto calentamiento de los ciclos D-O en el área del Océano Atlántico Norte – mar de noruega, aunque la evidencia para apoyar esta hipótesis pueda no ser fácil de obtener, dada la escala de tiempo implicado.

Conclusiones

1) Hace entre 90.000 y 12.000 años los registros de indicadores de temperatura muestran más de 20 cambios climáticos abruptos e intensos conocidos como ciclos Dansgaard-Oeschger espaciados de acuerdo a una periodicidad de 1470 años.

2) Cada oscilación D-O viene precedida de enfriamiento en el Atlántico Norte y descargas de icebergs, que cuando son intensos y prolongados constituyen un suceso Heinrich.

3) Las oscilaciones D-O presentan un cambio asimétrico de temperaturas con un calentamiento de 8-10°C en unas pocas décadas seguidos de un enfriamiento en etapas que dura de unos siglos a unos pocos milenios.

4) Antes del abrupto calentamiento en Groenlandia, las temperaturas están subiendo en la Antártida hasta unos 220 años después del inicio del calentamiento de Groenlandia.

5) El abrupto calentamiento del Hemisferio Norte incrementa las concentraciones globales de metano de los humedales boreales debido al incremento de temperaturas y precipitaciones.

6) El CO2 no juega ningún papel durante los ciclos D-O, y sus niveles no son ni causa ni consecuencia de los cambios climáticos más abruptos y más frecuentes del pasado. El incremento de los niveles de CO2 durante los sucesos Heinrich no altera significativamente ni la velocidad ni la magnitud del calentamiento durante la subsiguiente oscilación D-O.

7) Los ciclos D-O requieren niveles del mar entre 45 y 90 m por debajo de los actuales, y parecen ser inhibidos por la alta oblicuidad.

8) La principal teoría, la "hipótesis del Oscilador Salino", no tiene explicación para la periodicidad y se basa en pulsos de agua de deshielo no demostrados y un apagado de la Corriente de Retorno Meridional Atlántica contrario a la evidencia.

9) La teoría D-O aspirante propone la estratificación de aguas subsuperficiales cálidas por debajo de la haloclina y el hielo marino en el Atlántico Norte y el mar de Noruega, con el calentamiento abrupto siendo debido al colapso de esta estratificación.

10) Los ciclos de mareas lunisolares proporcionan una hipótesis interesante y explicativa del espaciamiento de 1470 años y de los mecanismos que disparan los ciclos D-O.