Monte Perdido

Monte Perdido

sábado, 6 de mayo de 2023

Fusión en el glaciar Thwaites

Después de publicar los dos artículos traducidos, tal y como prometí, publico aquí un resumen (espero que menos árido) de ambos artículos. 

En la semana del 15 de febrero de 2023 se publicaron en la revista Nature dos artículos sobre la región antártica del glaciar Thwaites, que brindan una imagen más clara de los cambios que tienen lugar bajo dicho  glaciar, que abarca un área del tamaño de Gran Bretaña o el estado estadounidense de Florida. Los resultados muestran que, aunque el derretimiento ha aumentado debajo de la plataforma de hielo flotante, la tasa actual de derretimiento es más lenta de lo que estiman actualmente muchos modelos informáticos. A pesar de una fusión más lenta, todavía hay un retroceso rápido del glaciar, por lo que parece que no se necesita mucho para desequilibrar el glaciar. El glaciar Thwaites es tan importante que tiene hasta su propia página web.

Aquí las traducciones más fieles a los originales y los enlaces sus respectivos artículos originales:

Heterogeneous melting near the Thwaites Glacier grounding line

Fusión basal suprimida en la zona Este de la línea de tierra del glaciar Thwaites

Introducción

El glaciar Thwaites es uno de los sistemas hielo-océano que cambia más rápidamente en la Antártida. Gran parte de la capa de hielo dentro de la cuenca del glaciar Thwaites se encuentra por debajo del nivel del mar sobre un lecho rocoso que se profundiza tierra adentro, haciéndolo susceptible a una pérdida de hielo rápida e irreversible que podría elevar el nivel global del mar en más de medio metro (65 cm para ser exactos) en los próximos siglos. La tasa y el alcance de la pérdida de hielo está determinada por las condiciones oceánicas y basales, ambas en gran parte desconocidas, dentro de la región de la zona de puesta a tierra  donde el glaciar Thwaites sale a flote al mar abierto. 

Contexto del glaciar Thwaites
Figura 1. Aquí se muestra una comparación del tamaño del glaciar Thwaites.

El rápido retroceso del glaciar Thwaites en la Antártida Occidental parece ser impulsado por diferentes procesos bajo su plataforma de hielo flotante. Nuevas observaciones desde donde el hielo ingresa al océano muestran que, si bien la fusión bajo  gran parte de la plataforma de hielo es más débil de lo esperado, el derretimiento en grietas y hendiduras es mucho más rápido. El glaciar está en retirada, y estos hallazgos dan un importante paso adelante para comprender la contribución del glaciar al futuro aumento del nivel del mar.

Visión general

Las condiciones atmosféricas y oceánicas en alta mar fuerzan el calentamiento  de las aguas profundas circumpolares  en la plataforma continental del Mar de Amundsen, donde contribuyen a la pérdida de hielo y al retroceso de la línea de tierra de los glaciares que drenan este sector de la capa de hielo de la Antártida occidental, incluido el glaciar Thwaites. 

El glaciar Thwaites se extiende hacia el mar desde la costa de Walgreen, formando la lengua glaciar de Thwaites y una plataforma de hielo marino flotante que descansa sobre un punto de anclaje saliente del fondo marino (línea de tierra). Una corriente circumpolar relativamente cálida de aguas profundas fluye hacia el glaciar a lo largo de la costa y a través de canales bajo el lecho marino, impulsando la fusión del hielo submarino en contacto con el agua del mar. El lecho debajo del hielo se profundiza hasta un máximo de 2.300 m bajo el nivel del mar, haciéndolo susceptible a una retirada a gran escala debida  a la fusión del hielo impulsado por el agua oceánica más cálida (por encima del punto de congelación).

 

Fusión en el glaciar Thwaites
Figura 2 Situación geográfica de la posición y área ocupadas por los glaciares Thwaites y Pine Island. La escala de colores representa la velocidad de desplazamiento del hielo en metros por año.


Los cambios en el sistema Thwaites se han acelerado en los pasados 20 años, lo que resulta en la ruptura de la lengua del glaciar y la propagación de grietas en sobre su plataforma de hielo. La retirada reciente de su línea de tierra ha pasado de retroceder unos 600 m al año a retroceder cerca de 1,2 km al año. Un derretimiento propiciado por aguas oceánicas más templadas junto con un adelgazamiento dinámico provoca que las tasas de flujo de hielo influyan en esta retirada, pero saber exactamente cómo operan estos factores es difícil por la limitación de observaciones generalmente pobres debajo del hielo. 

Las observaciones satelitales, que miden la elevación de la superficie del glaciar, sugieren que la plataforma de hielo está adelgazando en promedio 25 metros por década, Considerando que el radar aerotransportado de penetración de hielo mide el espesor del hielo estima tasas de hasta 45 metros por década en algunas partes. El hielo en esta región está anclado a unos 500 m bajo el nivel del mar, típico de la mayor parte del sistema Thwaites fuera del tronco occidental.

Se taladró un pozo de 600 m de profundidad a unos dos kilómetros de la línea de puesta a tierra  de la plataforma de hielo oriental del glaciar Thwaites, zona caracterizada por agua cálida y altamente estable con temperaturas sustancialmente superiores al punto de congelación. A pesar de estas condiciones cálidas, las bajas velocidades de la corriente y la fuerte estratificación de densidad en la capa límite hielo-océano restringen activamente la mezcla vertical de calor hacia la base de hielo, lo que da como resultado una fusión basal de hielo fuertemente suprimida. El modelo utilizado de fusión de la plataforma de hielo para generar proyecciones del nivel del mar no puede reproducir las tasas de fusión observadas debajo este glaciar. A pesar de su rápido retroceso y su inestable  línea de puesta a tierra, mantiene tasas de fusión basal relativamente modestas.

Una capa de agua más fría entre el fondo de la plataforma de hielo y el océano subyacente reduce la tasa de fusión a lo largo de las partes planas de la plataforma de hielo. Pero el derretimiento a formado una topografía en forma de gradas en la parte inferior de la plataforma de hielo. En estas áreas, así como en las grietas en el hielo, este se está derritiendo rápidamente. 

La zona de conexión a tierra, el punto donde se encuentra con el fondo marino, se ha retirado 14 km desde finales de la década de 1990. Estas medidas se han comparado con las observaciones de la tasa de fusión tomadas en otros cinco sitios debajo de la plataforma de hielo durante un período de nueve meses, cerca de la línea de puesta a tierra. El océano subyacente se volvió más cálido y salado, pero la tasa de derretimiento en la base del hielo promedió entre 2 y 5 m por año: menos que lo predicho por el modelo anterior.

Se desplegó un vehículo submarino no tripulado a través del pozo. El vehículo está diseñado para acceder a esas zonas de conexión a tierra que antes eran casi imposibles de inspeccionar. Las observaciones que hizo el vehículo del lecho marino y el hielo alrededor de la zona de conexión a tierra brindan más detalles sobre la imagen de cómo varía la fusión bajo la plataforma de hielo. Las zonas escalonadas, llamadas terrazas, así como las grietas en la base de hielo se están derritiendo rápidamente. El derretimiento es especialmente importante en las grietas: a medida que el agua se canaliza a través de ellas, el calor y la sal pueden transferirse al hielo, ensanchando estas.

Aunque el derretimiento vertical a lo largo de la base de la plataforma de hielo es menor de lo esperado, la fusión a lo largo del hielo inclinado en estas grietas y terrazas es mucho mayor y puede ser un factor importante en la pérdida de hielo en el glaciar Thwaites, especialmente a medida que las principales grietas avanzan a lo largo del glaciar, la plataforma de hielo y puede convertirse en el desencadenante principal del colapso de la plataforma de hielo.

Los modelos informáticos muestran que durante las próximas décadas, el glaciar puede perder hielo rápidamente, a medida que el hielo retrocede. El hielo que se drena desde Thwaites hacia el mar de Amundsen ya representa alrededor del cuatro por ciento del aumento global del nivel del mar. 

El glaciar Thwaites representa el 15% de la descarga de hielo de la capa de hielo antártico occidental e influye en una cuenca más amplia. Al introducirse el hielo bajo el nivel del mar, se cree que el glaciar Thwaites es susceptible a un retroceso desbocado desencadenado en su línea de puesta a tierra en la que el glaciar llega al océano. Una reciente aceleración del flujo de hielo y retroceso del frente de hielo y su línea de indican que la pérdida de hielo puede continuar. 

Superficie del glaciar Thwaites
La tasa de pérdida de masa de la plataforma de hielo ha aumentado en un 70% entre 1994 y 2012, precipitando un cambio hacia un drenaje más rápido de hielo en el océano. La respuesta de la capa de hielo de la Antártida occidental con base marina a un clima más cálido contribuye con una incertidumbre sustancial a las proyecciones del nivel del mar del siglo XIX. La evolución de la capa de hielo está dinámicamente vinculada al destino de las plataformas de hielo flotantes que se encuentran sobre el mar. Ejerciendo una fuerza resistiva en la línea de puesta a tierra donde la capa de hielo primero sale a flote, el refuerzo de la plataforma de hielo ayuda a controlar el flujo de hielo sobre tierra hacia el océano. En las últimas décadas, el elevado derretimiento basal impulsado por el océano ha provocado un rápido adelgazamiento de muchas plataformas de hielo antárticas, lo que reduce la resistencia de los contrafuertes de las plataformas de hielo.

Condiciones bajo la plataforma de hielo 

El agua templada ocupa gran parte del volumen oceánico bajo la plataforma de hielo, con temperaturas del océano 2,25 °C por encima del punto de congelación, disminuyendo solo ligeramente a 2 °C a unos 5 a 10 m de la base del hielo y a 400 m de la línea de tierra.

Un kilómetro aguas abajo de la línea de tierra, la superficie del hielo es muy rugosa, aproximadamente el 30% consiste en grandes fisuras. Se observó un derretimiento visible en toda la región. Aparecen pequeñas terrazas talladas en el hielo dentro de los 200 m de la línea de tierra, lo que indica que el derretimiento erosiona rápidamente estas caras inclinadas de hielo. 

Se observa fusión turbulenta impulsada por el océano. También se observan terrazas en grietas Por el contrario, el hielo aguas abajo bajo de la plataforma extremadamente plano, con pendientes superficiales menores a 5º.

Interacciones hielo-océano

En toda la región, se observa agua a  1,75 °C a una distancia de 1 m de la base de hielo, proporcionando suficiente calor para impulsar el derretimiento. 

 Aunque los datos más cercanos al hielo reflejan un aumento en la fusión. Las observaciones muestran una fuerte estratificación vertical el agua de fusión de origen terrestre formado a partir de fusión del hielo sobre tierra, cae al mar y forma una capa de agua fría justo bajo la base del hielo. Las corrientes oceánicas se debilitan a menos de 5 m del hielo desde una velocidad de fondo cercana a 3 cm por segundo a casi cero cerca de la interfaz hielo-océano. 

Por el contrario, las corrientes aumentan en las grietas hasta un máximo medido de 5,90 cm por segundo. Se han calculado de fusión ascendentes promedio de 5 m por año, pero el derretimiento en la región es muy variable.

 

Tasa de derretimiento de la plataforma de hielo del glaciar Thwaites

Figura 3 La tasa de derretimiento de la plataforma de hielo depende en gran medida de la pendiente, las pendientes pronunciadas contribuyen hasta el 27% de la pérdida de hielo bajo la plataforma de hielo a lo largo de solo el 9% del hielo base. 

a, Las tasas de derretimiento de la plataforma de hielo espacialmente variables muestran la fuerte influencia de la pendiente local. Cada curva mostrada consta de puntos de datos de velocidad de fusión que se han calculado utilizando el promedio regional de las condiciones oceánicas.

 b, La fusión lateral a lo largo pendientes superiores a 30° se estima que contribuye en un 27% a la fusión bajo la plataforma de hielo, mientras que estas pendientes representan solo el 9% de la plataforma de hielo. La fusión hacia arriba a lo largo de pendientes bajas sigue siendo la fuente más notable de fusión, en la que las pendientes de menos de 30° representan el 73% del derretimiento, mientras que representan el 91% del hielo. 

La estratificación suprime la fusión a lo largo de interfaces planas, mientras que las tasas de fusión estimadas a lo largo de las caras verticales se acercan a los 30 m por año en promedio. La fusión es más fuerte a lo largo de las paredes casi verticales de las grietas, en las que el agua está 1,8 °C por encima del punto de congelación.  Estas observaciones implican tasas de fusión a lo largo de las paredes laterales de las grietas de hasta 43 m por año.

Las interacciones hielo-océano bajo la plataforma de hielo son influenciadas incluso por la topografía del hielo a pequeña escala, que se extendería a otras plataformas de hielo de base cálida en las que corrientes de velocidades bajas a moderadas permiten que persistan altos niveles de estratificación oceánica cercana al hielo. Se calcula un derretimiento ascendente promedio moderado a lo largo de superficies planas en 5 m al año, que coincide con las tasas de fusión medidas en interfaces similares y son consistentes con las estimaciones históricas del radar de penetración de hielo. 

Más cercano a la línea de tierra, las tasas de fusión promedian 2 m al año con un  rango de 1 a 10 m al año. Las observaciones muestran que la retroalimentación entre la pendiente del hielo y el derretimiento es relevante para toda la base de plataformas de hielo, incluso cerca de la línea de base.

Es decir, la fusión promueve la formación de grietas y superficies inclinadas y estas a su vez son más susceptibles de ser fusionadas que las superficies planas. En la región estudiada, el 27% del derretimiento total ocurre a lo largo de las laderas que son mayores de 30°. Porque las grietas canalizan el agua a través ellas a velocidades que pueden transferir eficientemente el calor y la sal a las paredes empinadas de las grietas, estas tasas de fusión localmente altas deberían ensanchar tanto grietas y fisuras basales a través del glaciar, y contribuir al aumento del desprendimiento del glaciar. 

Conclusión

Hay que tener en cuenta que aunque la fusión bajo la plataforma de hielo sea reducida, es crítico que la fusión en las grietas sea tan alta, pues tiende a forzar el desprendimiento de grandes bloques de hielo. Es decir, el verdadero peligro no es a qué velocidad puede fundirse el hielo, sino el hecho de que al estar sobre el océano puede partirse y desprenderse con facilidad sin necesidad de fundirse. El hecho de que esté sobre el océano puede dar lugar al equívoco de que no influye sobre el nivel de este, una vez la plataforma se desprende y se aleja, su lugar es ocupado por hielo nuevo procedente de tierra con lo que si contribuye al aumento del nivel del mar, además al no existir el freno de la vieja plataforma, el flujo de hielo hacia el océano se acelera, con lo que el volumen de hielo entrante en el mar se multiplica.

 

Esquema de procesos de fusión en el glaciar Thwaites
Figura 4. Aunque la fusión bajo la plataforma es moderada (2-5 m por año) hay tres grandes peligros: 1º la fusión en las grietas alcanza los 30 m por año, lo que puede ampliar las grietas y desprender grandes porciones de la plataforma de hielo. (Ver recuadro ampliado) un hecho agravante de esta situación, es que dichas grietas se encuentran próximas a la línea de tierra. 2º. Una fusión moderada puede permitir la penetración de agua oceánica bajo la línea de tierra y sacar literalmente “a flote” una gran porción del glaciar que ahora está asentado sobre tierra. Esto podría implicar una subida “brusca” del nivel del mar. 3º La plataforma de hielo y la línea de tierra ejercen de frenos para el hielo que está aguas arriba, si estas desaparecen, dicho hielo podría precipitarse bruscamente hacia el océano.

Por otra parte, la plataforma tiene cientos de metros de grosor 500-600 m pero sus tasas de fusión reducida de 2 a 5 m anuales nos dan una vida estimada máxima de la plataforma de 100 a 300 años sin tener en cuenta los grandes bloques de hielo que pueden desprenderse mucho más prematuramente.

Donde está y como es el glaciar Thwaites
Figura 5. En esta imagen bastante inquietante, se puede ver que la totalidad del lecho glaciar se encuentra bajo el nivel del mar. Lo que puede provocar un colapso súbito del glaciar.