Monte Perdido

Monte Perdido
Mostrando entradas con la etiqueta IPCC. Mostrar todas las entradas
Mostrando entradas con la etiqueta IPCC. Mostrar todas las entradas

sábado, 10 de junio de 2023

La capa de hielo de Groenlandia

Esto es un resumen del último informe del IPCC AR6 para Groenlandia.

Cambios recientes observados

En este artículo se presentan cambios en el tiempo de la masa de hielo de  Groenlandia y se evalúan los diferentes procesos que está causando el aumento de la pérdida de masa. El cambio de masa total de la capa de hielo de Groenlandia comparada con la pérdida en la Antártida, se presenta en la Figura 1. 

 

La capa de hielo de Groenlandia

Figura 1 Pérdidas en la capa de hielo antártica  y en la capa de hielo de Groenlandia (cambios de masa). Los valores que se muestran en gigatoneladas (1 Gt = 1000.000.000 toneladas, los números grandes muchas veces son inimaginables y los pasamos por alto, 1 Gt equivale a 1 Km3 de hielo)  y provienen de mediciones de satélites mediciones para el período 1992–2020. El rango de incertidumbre estimado, aparece en colores sombreados, para los respectivos cambios acumulativos. 

En la actualizad Groenlandia habría perdido unos 5000 Km3 de hielo desde 1992.


La extensión estimada de la capa de hielo en diferentes momentos se muestra en la Figura 3.

Para el siglo XX hay reconstrucciones del cambio de masa estimado para la capa de hielo de Groenlandia y sus glaciares periféricos para el periodo 1900–1983 y para el período 1901–1990. El registro de satélites se remonta a 1972  (Figura 2). La tasa de cambio de masa de la capa de hielo fue positiva (es decir, ganó masa) entre 1972-1980 (47 ± 21 Gt por año) y luego negativa (es decir, perdió masa; –51 ± 17 Gt por año  y –41 ± 17 Gt por año) en los periodos  1980–1990 y 1990–2000, respectivamente. Después de 1992, es muy probable que la tasa del cambio de la masa de hielo fuera más negativa durante 2012-2016 que durante 1992-2001, con un nivel de confianza muy alto de que la fusión en verano ha aumentado desde la década de 1990 a un nivel sin precedentes durante al menos los últimos 350 años. El registro se ha extendido hasta 2020. La capa de hielo de Groenlandia perdió 4890 [4140–5640] Gt de hielo entre 1992 y 2020, provocando un aumento del nivel del mar de 13,5 [11,4 a 15,6] mm. (Figura1 y 2). En resumen: los aproximadamente 5000 Km3 de hielo perdidos en Groenlandia entre 1992 y 2020 han hecho aumentar el nivel del mar entre 1,1 y 1,5 cm.

Datos recientes muestran que, después de dos veranos fríos en 2017 y 2018, con una pérdida de masa relativamente moderada de alrededor de 100 Gt  al año, el cambio de masa de 2019 (–532 ± 58 Gt por año) fue la mayor pérdida de masa anual en el registro. La tasa de pérdida de hielo fue, en promedio, 39 [–3 a 80] Gt por año durante el período 1992–1999, 175 [131 a 220] Gt por año durante el período 2000–2009 y 243 [197 a 290] Gt por año durante el período 2010-2019.

Recientemente ha comenzado a dominar la pérdida de masa de la capa de hielo de Groenlandia [balance de masa superficial (SMB)], en lugar de la descarga del hielo sobre los fiordos (debido al aumento del derretimiento de la superficie y escorrentía), aumentando del 42% de la pérdida de masa total para 2000–2005 al 68% para el periodo 2009–2012. La descarga de hielo en los fiordos fue relativamente constante entre 1972-1999, con una variación de alrededor del 6% para toda la capa de hielo, mientras que la fusión superficial varió por un factor de más de dos interanualmente, lo que lleva a una pérdida o ganancia de masa en un año dado (Figura 2). 

 

La capa de hielo de Groenlandia

 

La capa de hielo de Groenlandia

Figura 2.  Cambios de masa de hielo y tasas de cambio para las regiones de la capa de hielo de Groenlandia. 

(a) Serie temporal de cambios de masa para cada una de las principales cuencas de drenaje que se muestran en la figura del recuadro para los períodos 1972–2016, 1992–2018 y 1992–2020.

(g) Groenlandia dividida en siete regiones. Estimaciones de las tasas de cambio de masa del balance de masa superficial por región.

El patrón temporal en estos conjuntos de datos más largos conduce a una alta confianza que las pérdidas de masa de la capa de hielo de Groenlandia están cada vez más dominadas por la SMB, pero existe un alto nivel de confianza en que la pérdida de masa varía fuertemente, debido a la gran variabilidad interanual de esta. A escala regional, la altura de la superficie está disminuyendo en todas las regiones, y se han observado retiros generalizados del frente terminal y de ruptura de bloques de hielo (frentes glaciares).

Las mayores pérdidas masivas han ocurrido a lo largo de la costa oeste y en sureste de Groenlandia (Figura 2), concentrándose la descarga en unos pocos glaciares. Este patrón en esta región es consistente con las observaciones del sistema (GPS) que muestra el levantamiento elástico del lecho rocoso de decenas de centímetros entre 2007 y 2019 como resultado de la pérdida continua de masa de hielo. La serie temporal regional muestra que la fusión superficial ido reduciendo la cantidad de hielo gradualmente en todas las regiones, mientras que el aumento de la descarga en el sureste, centro este, noroeste y el centro-oeste se ha relacionado con el retroceso de los glaciares de marea. En resumen, los registros regionales detallados muestran un aumento en la pérdida de masa en todas las regiones después de la década de 1980, causado tanto por aumentos en la descarga de hielo por los glaciares en sus frentes, como por el derretimiento de hielo sobre la superficie (confianza alta), aunque los patrones varían entre las regiones. La pérdida de hielo más grande se produjo en el noroeste y el sureste de Groenlandia (confianza alta).

La variabilidad a gran escala la circulación atmosférica es un importante impulsor de la SMB a corto plazo. Este efecto de variabilidad atmosférica de la circulación tanto en la precipitación como en las tasas de fusión 

 

La capa de hielo de Groenlandia

Figura 3 Cambio de masa acumulada de la capa de hielo de Groenlandia y contribución equivalente al nivel del mar. 

(a) Una estimación basada en el rango de valores de la masa de la capa de paleo hielo de Groenlandia y los equivalentes del nivel del mar en relación con la actualidad y la mediana de todas las estimaciones centrales.

(b) (b, izquierda) pérdida de masa acumulada (y nivel del mar equivalente) desde 2015 desde 1972, la estimación pérdida de masa desde 1840 indicada con un recuadro sombreado, y proyecciones hasta 2100 Se muestran interpretaciones esquemáticas de reconstrucciones individuales de la extensión espacial de la capa de hielo de Groenlandia.

     (c) período cálido del Plioceno medio; 

     (d) Último Interglacial

(e) el Último Máximo Glacial: el sombreado gris muestra la extensión del       hielo en tierra. Mapas de cambios de elevación media 

    (f) 2010-2017 derivados de la altimetría del radar 

(g) cambios proyectados (2093-2100) 


fue impulsado por condiciones atmosféricas altamente anómalas. Patrones de circulación, tanto diarios como estacionales a escalas temporales. El derretimiento de la capa de hielo de Groenlandia está más fuertemente correlacionado con el índice de bloqueo de Groenlandia que con el índice de la Oscilación del Atlántico Norte de verano. Estudios han demostrado que una mayor insolación (reducción de la cobertura de nubes) conduce a un aumento de las tasas de fusión, particularmente sobre la zona de ablación de bajo albedo en la parte sur de la capa de hielo de Groenlandia. Por el contrario, un aumento de la nubosidad sobre las partes centrales de alto albedo de la capa de hielo, demostró que la radiación saliente conduce a una mayor fusión y una recongelación reducida de agua de deshielo. 

Los efectos de las nubes se compensan entre sí, el aumento en el derretimiento es causado por aumento de los flujos de calor. En resumen, existe una confianza media en que los cambios en la cobertura de nubes son un importante impulsor del aumento de las tasas de fusión en el parte sur y oeste de la capa de hielo de Groenlandia.

Las retroalimentaciones positivas de albedo contribuyeron sustancialmente a aumentar el derretimiento de la capa de hielo de Groenlandia posteriormente a la década de 1990. Varias retroalimentaciones (en su mayoría positivas) que involucran albedo de superficie operan sobre las capas de hielo. La amplificación de la fusión por el aumento observado de la exposición al hielo desnudo a través de la migración de la línea de nieve a partes más altas de la capa de hielo desde el año 2000  fue cinco veces más fuerte que el efecto de los procesos hidrológicos y biológicos que conducen a la reducción de albedo del hielo. Las impurezas, en las partes biológicamente activas conducen a una reducción del albedo y se estima que han aumentado la escorrentía de hielo desnudo en el sector suroeste de la capa de hielo de Groenlandia alrededor del 10%. En resumen,  existe un alto nivel de confianza en que el derretimiento de la capa de hielo de Groenlandia aumentó desde alrededor de 2000 amplificado por retroalimentaciones positivas de albedo, siendo la expansión de la extensión del hielo desnudo el factor dominante, y el albedo en la zona de hielo desnudo está controlado principalmente por impurezas biológicas.

Alrededor de la mitad del agua de deshielo de la superficie de la capa de hielo de Groenlandia entre 1960-2014 fue escorrentía, mientras que la mayor parte del resto se infiltró en el firn (nieve compactada)  y nieve, donde o bien se volvió a congelar o se acumuló en acuíferos. Una disminución del contenido de aire en el firm entre 1998-2008 y 2010-2017 en el área de percolación de baja acumulación del oeste de Groenlandia, redujo la capacidad de retención de agua de deshielo.

Además, la infiltración de agua de deshielo en el firn puede estar fuertemente limitada por losas de hielo de baja permeabilidad creadas por la recongelación de infiltrado agua de deshielo. Observaciones y modelos recientes indican que las capas de baja permeabilidad que se expanden rápidamente conducen a un aumento en el área de escorrentía desde 2001.

En resumen el almacenamiento de agua de deshielo y recongelación puede amortiguar temporalmente un aumento de derretimiento a gran escala, pero se han identificado factores limitantes.

Las temperaturas del océano cerca de la zona de puesta a tierra de los glaciares de marea es críticamente importante para su tasa de descarga por ruptura, pero hay poca confianza en la comprensión de su respuesta al forzamiento oceánico. 

El aumento de icebergs sobre el mar, se ha asociado con un período de retroceso generalizado de los glaciares de marea. Hay pruebas sólidas de un rápido derretimiento submarino en glaciares de marea. Cambios en el derretimiento submarino y la descarga de agua de deshielo subglacial pueden desencadenar un aumento descarga de hielo al reducir el apoyo al flujo de hielo y promover su ruptura; El calentamiento de las aguas oceánicas ha estado implicado en el reciente adelgazamiento y ruptura del hielo flotante lenguas en el noreste y noroeste de Groenlandia. En escalas temporales decenales, La posición final de los glaciares de marea se correlaciona con el derretimiento submarino. En escalas de tiempo más cortas, glaciares individuales o grupos de glaciares pueden comportarse de manera diferente y asincrónica, y no hay asociaciones siempre claras entre la temperatura del agua y las tasas de ruptura glaciar o retroceso. En resumen, las aguas oceánicas más cálidas y el aumento de la temperatura de descarga subglacial de superficie fundida en los márgenes de la terminación marina de los glaciares aumentan el derretimiento submarino, lo que conduce a un aumento de la descarga de hielo. Hay confianza media en que esto contribuyó a la aumento de la tasa de pérdida de masa de Groenlandia, particularmente en el período 2000-2010 cuando se observó un aumento de la descarga en el sureste y noroeste.

Permanecen aún grandes incertidumbres en el espesor del hielo de alrededor de la mitad de los glaciares de descarga y las regiones de icebergs siguen estando pobremente muestreadas cerca de los extremos del glaciar. Existe un alto grado de confianza en que la batimetría (que rige las masas de agua que desembocan en los fiordos) y la geometría del fiordo y topografía del lecho rocoso (control de la dinámica del hielo) modulan la respuesta de glaciares individuales al forzamiento climático.

Evaluación del modelo

El progreso reciente confirma que existe una confianza media en la capacidad de los modelos del clima para simular cambios en el derretimiento de la capa superficial de hielo de Groenlandia. Las deficiencias restantes en el acoplamiento entre modelos de clima y las capas de hielo (p. ej., baja resolución espacial) limitaron la adecuada representación de las retroalimentaciones entre ellos. Las simulaciones de derretimiento superficial resultantes se comparan mejor con modelos climáticos regionales y observaciones, pero las deficiencias restantes conducen a problemas para reproducir un estado actual de la capa de hielo a las observaciones. En resumen, hay una confianza media en los datos cuantitativos sobre las simulaciones del estado actual de la capa de hielo de Groenlandia.

Las interacciones hielo-océano siguen siendo poco conocidas y difíciles de modelar, con parametrizaciones a menudo utilizadas para estimar la ruptura de glaciares que terminan en el mar. Debido a las dificultades de modelar gran cantidad de terminaciones marinas glaciares y la disponibilidad limitada de datos sobre la roca madre de alta resolución, la mayoría del trabajo de modelado reciente sobre los glaciares de descarga de Groenlandia está centrado en glaciares individuales o en un número limitado, o una región específica.

El estudio de las contribuciones de los cuatro glaciares más grandes sobrestimó el total de la contribución de los glaciares de la capa de hielo de Groenlandia, debido a las diferencias en respuesta entre glaciares grandes y pequeños. Las interacciones hielo-océano tienen el potencial de desencadenar un retroceso extensivo de los glaciares en escalas de décadas, como lo indican las observaciones. Un punto de interés de los modelos de la capa de hielo continental ha sido el tratamiento mejorado de glaciares que terminan en el mar a través de la inclusión de procesos de ruptura. Un conjunto de datos topográficos mejorados del lecho rocoso permiten capturar mejor la descarga de hielo para los glaciares en modelos de capa de hielo continental, y las simulaciones indican que la topografía del lecho rocoso controla la magnitud y la tasa de retroceso. En general, los glaciares que desembocan en los fiordos están controlados por la topografía del lecho rocoso, y hay poca confianza en la cuantificación de la futura pérdida de masa de Groenlandia provocada por el calentamiento de las condiciones oceánicas, debido a las limitaciones en la comprensión actual de las interacciones hielo-océano, su implementación en modelos de capas de hielo y conocimiento de la topografía del lecho rocoso.

Un desafío pendiente es la baja confianza en la reproducción histórica de cambios de masa de la capa de hielo de Groenlandia (Recuadro 1). Sin embargo, hay confianza media en los modelos de capa de hielo que reproducen el presente estado de la capa de hielo de Groenlandia, lo que lleva a una confianza media en la capacidad actual para proyectar con precisión su evolución futura. 

Proyecciones al 2100

Los cambios en el derretimiento superficial del hielo de Groenlandia o SMB contribuirán a elevar el nivel del mar en 2100 entre 3 y 16 cm con un valor promedio más probable de 7 cm. Según proyecciones de SMB obtenidas por dos modelos climáticos regionales y reconstrucciones basadas en conjuntos de temperatura. Este valor puede verse incrementado hasta 6 cm en simulaciones de modelos climáticos regionales en las que se atribuye una mayor amplificación ártica y retroalimentaciones de nubes y hielo marino asociadas que en otras simulaciones.

La contribución de Groenlandia al nivel futuro del mar (Tabla 1) muestra una contribución probable de 7 cm (entre 0 y 11 cm) para estimaciones bajas y de 14 cm (entre 8 y 27 cm) según estimaciones altas. Nuevas proyecciones para el siglo XXI han incluido el comportamiento del manto de hielo dinámico acoplado ESM a modelos atmosféricos regionales (Tabla 1). El modelo  acoplado ESM de capa de hielo proyecta un aumento del nivel del mar de 10,9 cm hacia 2100 respecto al nivel del  mar de 2015 y una contribución similar  bajo un escenario idealizado de un aumento de un 1% por año en las emisiones de CO2. Las simulaciones incluyen Interacciones entre la capa de hielo y la atmósfera y el agua de deshielo en la superficie de la capa de hielo encaminado al océano. El modelo atmosférico regional acoplado y modelo de capa de hielo proyecta un aumento del nivel del mar de 7,9 cm en 2100 en relación con el año 2000.

Un ESM de menor complejidad acoplado a un modelo de capa de hielo da una contribución del nivel del mar de 2,5 a 6,4 cm  y 5,6 a 12 cm  (el rango se debe a cuatro simulaciones con diferentes conjuntos de parámetros para el modelo de atmósfera) identifican una simulación con un conjunto de parámetros más probables que proyectan entre 3,4 y 7,3 cm según diferentes escenarios. 

Es posible que la respuesta dinámica esté subestimada. Las proyecciones multimodelo se corrigen con una evaluación de la respuesta dinámica histórica al clima anterior a 2015 forzamiento (Recuadro 1). Para el período 2015–2100, se proyectan contribuciones al nivel del mar que van desde 1 a 5 cm. La mayor pérdida de masa se atribuye a una mayor disminución en SMB debido a la alta sensibilidad climática de los modelos utilizados. Las proyecciones fueron corregidas con la tendencia histórica. En segundo lugar, un emulador de las proyecciones está forzado por las distribuciones de temperatura del aire en la superficie para cada modelo a partir de un emulador de balance energético de dos capas y luego corregido con la tendencia histórica. Estos dos enfoques resultan en proyecciones que son similares en sus valores medianos y proyecciones pero difieren en su rango. Resultados similares se obtienen cuando se aplica el ajuste paramétrico. Groenlandia podría contribuir con hasta 33 cm al aumento del nivel del mar en 2100 en relación con 2000. Se señaló que el potencial alto en la contribución del nivel del mar en este estudio podría deberse a la suposición de calentamiento espacialmente uniforme, que puede sobrestimar tasa de derretimiento superficial, Sin embargo, también refleja la profunda incertidumbre que rodea el forzamiento atmosférico, procesos superficiales, fusión submarina, ruptura y dinámica del hielo. Se atribuye un 40% de dispersión del conjunto de modelos múltiples a la incertidumbre del modelo de la capa de hielo, 40% de incertidumbre del modelo climático y 20% de incertidumbre al forzamiento oceánico.

 

La capa de hielo de Groenlandia
Cuadro 1 Contribuciones del nivel del mar proyectadas,  en metros para la capa de hielo de Groenlandia para 2100 en relación con el periodo 1995-2014, Las cursivas denotan contribuciones parciales. La respuesta dinámica histórica  de las simulaciones ISMIP6 se estima en 0,19 ± 0,10 mm por año (0,02 m ± 0,01 m en 2100 en relación con 2015). 


Por tanto, existe una confianza media en que la pérdida de masa de la capa de hielo de Groenlandia está dominada por la incertidumbre en los escenarios climáticos y procesos superficiales, mientras que la incertidumbre en la fusión por ruptura frontal juega un papel menor.

Los procesos superficiales, en lugar del hielo descargado en el océano, dominarán la pérdida de hielo de Groenlandia durante el siglo XXI, independientemente del escenario de emisiones (alta confianza). Así lo confirman las proyecciones. La pérdida masiva proyectada de Groenlandia se debe predominantemente al aumento del agua de deshielo en la superficie y a la pérdida en capacidad de recongelamiento que da como resultado una disminución de SMB (nivel de confianza alto), concurrente con el aumento de las temperaturas y el oscurecimiento de la capa de hielo superficie  Los cambios de masa debidos a SMB y la dinámica de los glaciares de salida están vinculados, como la pérdida de masa por un proceso disminuye la pérdida de masa por el otro – por ejemplo, SMB elimina el hielo antes de que pueda llegar al glaciar marino término. Existe un grado de confianza medio de que la pérdida de masa a través del hielo de descarga disminuirá en el futuro, porque un aumento en la pérdida de masa (mediante el aumento de escorrentía superficial) conduce, en la mayoría de las áreas, a un retroceso del margen del glaciar hacia la tierra sobre el nivel del mar, aislando el capa de hielo de la influencia marina.

En resumen, es prácticamente seguro que la capa de hielo de Groenlandia continuará perdiendo masa este siglo bajo todos los diferentes escenarios de emisiones,  y una alta confianza en que la pérdida de masa total para 2100 aumentará con las emisiones acumuladas. La evaluación del nivel del mar está basada en proyecciones, lo que permite un enfoque más consistente a una gama más amplia de forzamientos climáticos y oceánicos. Es probable que la capa de hielo de Groenlandia contribuya entre 1 cm y 10 cm  con un nivel más probable de 6 cm para un escenario de bajas emisiones y entre 9 cm y 18 cm con un nivel más probable de 13 cm para un escenario de emisiones más alto para 2100 en relación con el periodo 1995–2014.

Existe un alto grado de confianza en que la pérdida de Groenlandia estará cada vez más dominada por el derretimiento de la superficie (SMB), ya que la respuesta dinámica de los glaciares forzada por el océano disminuirá a medida que los márgenes marinos se retiran a tierras más altas.

Proyecciones más allá de 2100

Las proyecciones del nivel del mar para 2300 son de 15 cm en escenarios de bajas emisiones y de 31 cm a 1.19 m en escenarios de  altas emisiones. Un nuevo estudio da una contribución del nivel del mar de 11 a 20 cm en escenarios de bajas emisiones  y de 61 cm a 1,29 m en escenarios de altas emisiones. Otras proyecciones de altas emisiones indican que Groenlandia podría contribuir entre 25 cm y 1,74 m. Se proyectan pérdidas en Groenlandia de 54 cm (entre 28 cm y 1,28 m) para un calentamiento de 2 °C y 97 cm ( entre 40 cm y 2,23 m) con un calentamiento de 5 °C. Estos estudios coinciden en que estas evaluaciones están en el extremo inferior del rango de proyecciones. Además, las observaciones sugieren que las pérdidas de la capa de hielo de Groenlandia están siguiendo el rango superior de las proyecciones. Por lo tanto, el rango probable para la contribución de la capa de hielo de Groenlandia al nivel medio mundial del nivel del mar (GMSL) hacia 2300 puede ser  de entre 11 y 25 cm o entre 31 cm y 1,74 m bajo diferentes escenarios. Sin embargo, dada la incertidumbre de los modelos climáticos utilizados para proyectar el cambio de la capa de hielo durante el siglo XXI y la amplia gama de simulaciones que se extienden más allá de 2100, solo hay  poca confianza en la contribución a GMSL para 2300 y más allá.

El papel de la retroalimentación elevación-masa para futuras proyecciones de Groenlandia se puede evaluar a partir de simulaciones paleolíticas.

La pérdida total de hielo de Groenlandia, contribuiría en unos 7 m al nivel del mar, durante un milenio o más ocurriría para una temperatura superficial media global sostenida (GMST) entre 1 °C (confianza baja) y 4 °C (confianza media) por encima de los niveles preindustriales. Nuevos estudios confirman esta evaluación y  estiman que una pérdida completa podría suceder en alrededor de 8000 años a 5,5°C y en unos 3000 años a 8,6°C. Basado en la concordancia entre estudios nuevos y previos, por lo tanto, existe una alta confianza en que la tasa a la cual el comportamiento de la capa de hielo de Groenlandia depende de la cantidad de calentamiento.

Se ha encontrado un umbral de pérdida de hielo irreversible vinculada al tamaño de la capa de hielo. Si la capa de hielo pierde una masa equivalente a unos 3-3,5 m de aumento del nivel del mar, no volvería a crecer a su estado actual, y con 2 m de aumento del nivel del mar sería irreversible. El momento en el que la  capa de hielo podría alcanzar este volumen crítico depende de las condiciones oceánicas y  atmosféricas, la dinámica del hielo y la retroalimentación clima-capa de hielo. Por lo tanto, las proyecciones difieren en  magnitud y tasa de cambio de temperatura para cruzar el umbral de pérdida irreversible. Proyecciones de conjunto indican que el umbral de masa puede alcanzarse en tan solo 400 años si el calentamiento alcanza 10°C o más por encima del presente. En resumen, hay una confianza alta en la existencia de un umbral de comportamiento de la capa de hielo de Groenlandia en  un clima más cálido; sin embargo, hay poco acuerdo sobre la naturaleza de los umbrales y los puntos de inflexión asociados. 

Resumen

Está claro que Groenlandia está perdiendo hielo a un ritmo cada vez mayor, sobre todo debido a procesos de derretimiento de la capa superficial. (5000 km cúbicos entre 1992 y 2020). Existen incertidumbres de la velocidad de pérdida y de su contribución al aumento del nivel del mar en función de los diferentes modelos empleados y de los diferentes escenarios de emisiones futuras, pero es claro la contribución de la masa total de hielo sería en torno a 7 m lo cual tardaría miles de años en suceder con altos niveles de calentamiento. Dentro de nuestro siglo podemos esperar elevaciones de centímetros y derretimientos más moderados.


sábado, 25 de febrero de 2023

Lo que nos dicen los climas pasados sobre el actual cambio climático

Introducción

Esto es una traducción adaptada del resumen del capítulo 5 del informe del IPCC AR5 de 2013. “ Information from Paleoclimate Archives”

Masson-Delmotte, V., M. Schulz, A. Abe-Ouchi, J. Beer, A. Ganopolski, J.F. González Rouco, E. Jansen, K. Lambeck, J. Luterbacher, T. Naish, T. Osborn, B. Otto-Bliesner, T. Quinn, R. Ramesh, M. Rojas, X. Shao and A. Timmermann, 2013: Information from Paleoclimate Archives. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 

En azul mis comentarios personales

Variaciones de gases de efecto invernadero y respuestas climáticas pasadas

Es un hecho que las concentraciones actuales de la atmósfera de gases de efecto invernadero (GEI) dióxido de carbono (CO2), metano (CH4) y el óxido nitroso (N2O) superan el rango de concentraciones registradas en núcleos de hielo durante los últimos 800.000 años. Los cambios en las concentraciones atmosféricas de GEI se pueden determinar con confianza muy alta a partir de núcleos de hielo polar.

Lo que nos dicen los climas pasados sobre el actual cambio climático


Las concentraciones atmosféricas y el forzamiento radiativo asociado no tienen precedentes con respecto a la resolución más alta registros de testigos de hielo de los últimos 22.000 años. Es posible también que no tenga precedentes con los registros de menor resolución los últimos 800.000 años.

Existe un alto grado de confianza en que los cambios en la concentración de CO2 atmosférico juegan un papel importante en los ciclos glaciales e interglaciares. Aunque el principal impulsor de los ciclos glaciales e interglaciares radica en la distribución estacional y latitudinal de la energía solar entrante impulsada por cambios en la geometría de la órbita de la Tierra alrededor del Sol ("forzamiento orbital”), las reconstrucciones y simulaciones  muestran que la magnitud de los cambios de volumen de hielo y temperatura glacial-interglaciar no pueden explicarse sin tener en cuenta los cambios en el contenido atmosférico de CO2 y las retroalimentaciones climáticas asociadas. Durante la última desglaciación, la temperatura media mundial aumentó entre   3°C y 8°C. Si bien la tasa media de calentamiento global era de entre 0.3°C a 0.8°C por cada mil años, dos periodos estuvieron marcados por cambios más rápidos en tasas de calentamiento, probablemente entre 1 °C y 1,5 °C  cada mil años, aunque regionalmente y en escalas de tiempo más cortas pueden haber ocurrido tasas más altas.

Nuevas estimaciones de la sensibilidad climática de equilibrio basadas en reconstrucciones y simulaciones del Último Máximo Glacial (hace 21.000 años a 19.000 años) muestran que al duplicar la concentración de CO2 atmosférico son muy improbables valores tanto por debajo de 1°C como por encima de 6°C. En algunos modelos, la sensibilidad climática difiere entre climas cálidos y fríos debido a las diferencias en la representación de retroalimentaciones en las nubes.

La temperatura superficial media mundial estuvo significativamente por encima de los niveles preindustriales durante varios periodos caracterizados por altas concentraciones atmosféricas de CO2. Durante el Plioceno medio (hace 3,3 a 3,0 millones de años), la concentración atmosférica de CO2 estuvo entre 350 ppm y 450 ppm (confianza media) las temperaturas medias globales en la superficie eran de 1,9°C.a 3,6°C  superiores al del clima preindustrial. Durante el Eoceno temprano (hace 52 a 48 millones de años), la atmósfera tenía concentraciones de CO2  alrededor de 1000 ppm (confianza media) cuando las temperaturas superficiales medias globales eran de 9°C a 14°C  mayores que para las condiciones preindustriales.

Nuevas reconstrucciones de temperatura y simulaciones de climas pasados  muestran con alta confianza una amplificación polar en respuesta a los cambios en la concentración de CO2 atmosférico. Para altos niveles de CO2 como sucedió en el Eoceno o del Plioceno y niveles bajos de CO2 como como el Último Máximo Glacial (hace 21.000 a 19.000 años), reconstrucciones y simulaciones de la temperatura global del aire, muestran una respuesta más fuerte a los cambios en las concentraciones de GEI en la atmósfera en latitudes altas en comparación con el promedio mundial.

Es decir, para concentraciones de CO2 similares a las actuales y una vez alcanzado el equilibrio térmico del sistema océano-criosfera,  podemos esperar temperaturas entre 2 y 3,5 ºC superiores  a la época preindustrial. (Actualmente son de entre 1 y 1,2 ºC, hay que tener en cuenta la inercia térmica del sistema océano-criosfera). Por cierto la tasa de calentamiento es aproximadamente de 1ºC cada 100 años, en el mejor de los casos es 10 veces más rápida que cualquier tasa de calentamiento natural.

Resumiendo. Si hoy dejásemos de emitir gases de invernadero, el calentamiento continuaría durante un mínimo de 100 a 150 años hasta alcanzar un valor cercano a los 3ºC respecto a la época preindustrial.

Cambios globales en el nivel del mar durante períodos cálidos pasados

La tasa actual de cambio del nivel medio global del mar, a partir del finales del siglo XIX y principios del XX, es, con confianza media, inusualmente alta en el contexto de variaciones a escala centenaria de la últimos dos milenios. La magnitud de la media mundial a escala centenaria las variaciones del nivel del mar no superaron los 25 cm en los últimos milenios (confianza media).

Subida nivel del mar por cambio climático


Hay un nivel de confianza muy alto en que la media global máxima nivel del mar durante el último período interglaciar (129.000 a 116.000 hace años) fue, durante varios miles de años, al menos 5 m más alto que el presente y alta confianza de que no superó los 10 m por encima del presente. La mejor estimación es 6 m más alta que la actual. Basado en cambios de elevación derivados de una muestra de un núcleo de hielo de Groenlandia, la capa de hielo de Groenlandia muy probablemente contribuyó entre 1,4 y 4,3 m equivalentes al nivel del mar, lo que implica con confianza media una contribución de la capa de hielo antártica al nivel medio global del mar durante el último período interglaciar.

Existe un alto grado de confianza en que el nivel medio global del mar estaba por encima presente durante algunos intervalos cálidos del Plioceno medio (3.3

a 3,0 millones de años), lo que implica un volumen reducido de las capas de hielo polar. Las mejores estimaciones de varios métodos implican con alta confianza que el nivel del mar no ha superado los +20 m durante los períodos más cálido períodos del Plioceno, debido a la desglaciación de Groenlandia y el  área occidental de la Antártida y algunas áreas de la capa de hielo de la Antártida oriental.

 

Se habla mucho de si el nivel del mar aumentará un metro de aquí al año 2100. Los registros geológicos nos dicen que si hoy dejásemos de emitir gases de invernadero, el nivel del mar subirá hasta cerca de 20 metros. El único consuelo que podemos tener, es que no será en este siglo.

 

Cambio climático reciente observado en el contexto de variabilidad climática interglacial

 

Nuevas reconstrucciones de temperatura y simulaciones de los milenios más cálidos del último período interglaciar (129.000 a 116.000 hace años) muestran con confianza media que la media global las temperaturas superficiales anuales nunca fueron más de 2°C más altas que las temperaturas preindustriales. La temperatura de la superficie en latitudes altas, promediada sobre varios miles de años, fue al menos 2°C más cálida que la actual (alta confianza). Un mayor calentamiento estacional y anual debido a un forzamiento orbital en latitudes altas, confirma la importancia de las retroalimentaciones de la criosfera para la estacionalidad. Durante estos períodos, las concentraciones atmosféricas de GEI estaban cerca del nivel preindustrial.

 

Hay un nivel de confianza alto en que el calentamiento medio anual de la superficie desde el siglo XX ha revertido las tendencias de enfriamiento a largo plazo de los últimos 5000 años en latitudes medias a altas del hemisferio norte. Las reconstrucciones de la temperatura de la superficie revelan una  tendencia multimilenaria al enfriamiento a lo largo de los últimos 5000 años. La última tendencia al enfriamiento persistió hasta el siglo XIX y puede atribuirse con alta confianza al forzamiento orbital, según simulaciones de modelos climáticos.

 

Existe una confianza media a partir de las reconstrucciones de que la actual la retirada del hielo marino en el verano (1980–2012) no tiene precedentes y las temperaturas de la superficie del mar en el Ártico han sido anormalmente altas en la perspectiva de al menos los últimos 1450 años. Existe un alto grado de confianza en que la retirada de los glaciares extratropicales del hemisferio norte hace entre 8000 y 6000 años se debieron principalmente a la alta insolación de verano (forzamiento orbital). El retroceso glaciar actual ocurre dentro de un contexto de forzamiento orbital que sería favorable para el crecimiento de los glaciares en el hemisferio Norte. Si los glaciares continúan reduciéndose al nivel actual, la mayoría de los glaciares extratropicales se reducirán a la mínima extensión, que existió entre hace 8000 y 6000 años, dentro de este siglo (confianza media).

 

Para las temperaturas medias anuales del hemisferio Norte, el período 1983–2012 fue muy probablemente el período de 30 años más cálido de los últimos 800 años (nivel de confianza alto) y probablemente el período de 30 años más cálido del últimos 1400 años (confianza media). Esto está respaldado por la comparación de temperaturas instrumentales con múltiples reconstrucciones de una variedad de datos indirectos y métodos estadísticos. En respuesta a la radiación solar, forzamiento volcánico  y antropogénico, los modelos climáticos simulan los cambios de temperatura observados durante los últimos 1200 años en el hemisferio norte, que son generalmente consistentes en magnitud con las reconstrucciones, dentro de sus rangos de incertidumbre.

 

Las reconstrucciones de temperatura de la superficie a escala continental muestran, con alta confianza, períodos de varias décadas durante el óptimo climático medieval (950 a 1250) que algunas regiones fueron tan cálidas como  como a mediados del siglo XX y en otros tan cálidas como a finales del siglo XX. Con un nivel de confianza alto, estos períodos cálidos regionales no fueron tan sincrónicos entre regiones como el calentamiento desde mediados del siglo XX. Basado en la comparación entre reconstrucciones y simulaciones, hay un alto nivel de confianza en que no solo influyeron los forzamientos orbitales externos, el forzamiento solar y el volcánico, también contribuyó sustancialmente la variabilidad interna, al patrón espacial y al momento en que  la temperatura de la superficie cambió entre las condiciones de óptimo climático medieval y la pequeña edad de hielo (1450 a 1850).

 

Existe un alto nivel de confianza para las sequías durante el último milenio fueron de mayor magnitud y mayor duración que las observadas desde principios del siglo XX en muchas regiones. Hay confianza media en que ocurrieron más megasequías en el monzón de Asia y condiciones más húmedas prevalecieron en las zonas áridas de Asia Central y el Sur Región monzónica americana durante la Pequeña Edad de Hielo (1450 a 1850) en comparación con el óptimo climático medieval (950 a 1250).

 

Con confianza alta, durante los últimos cinco siglos, ocurrieron inundaciones mayores que las registradas desde 1900 en el norte y Europa central, región del Mediterráneo occidental y Asia oriental. Hay confianza media en que las grandes inundaciones modernas son comparables igualan o superan las inundaciones históricas en magnitud y/o frecuencia en el Cercano Oriente, India y América del Norte central.

 

Cambios pasados en los modos climáticos

 

Nuevos resultados de registros de coral de alta resolución con confianza alta indican que el sistema El Niño-Oscilación del Sur (ENSO) se ha mantenido muy variable a lo largo de los últimos 7000 años, sin mostrar evidencia perceptible de una modulación orbital. Esto es consistente con una débil reducción de la amplitud a mediados del Holoceno de solo un 10% simulada por la mayoría de  modelos climáticos.

Con alta confianza, los cambios decadales y multidecadales en el Índice de Oscilación del Atlántico Norte (NAO) de invierno observado desde del siglo XX  tiene precedentes en el contexto de los últimos 500 años. Períodos de NAO invernal negativa o positiva con fases persistente, similares a las observadas en las décadas de 1960 y 1990 a 2000, respectivamente, no son inusuales en el contexto de las reconstrucciones NAO durante al menos los últimos 500 años.  

 

Cambio climático abrupto e irreversibilidad

 

Con confianza alta, el modo interglaciar de la circulación de vuelco meridional del océano Atlántico (AMOC) [Corriente del Golfo] puede recuperarse de una entrada de agua dulce a corto plazo en el norte subpolar Atlántico. Hace aproximadamente 8200 años, una repentina liberación de agua dulce ocurrió durante las etapas finales del derretimiento de la capa de hielo de América del Norte. Las observaciones  paleoclimáticas y los resultados del modelo indican, con un alto nivel de confianza, una marcada reducción en la fuerza de la AMOC seguida por una recuperación rápida, dentro de aproximadamente 200 años después de la perturbación.

 

A partir de nuevas reconstrucciones paleoclimáticas y estudios de modelado, hay un nivel de confianza muy alto de que la AMOC se ha reducido y el enfriamiento en la región asociada del Atlántico Norte, ha provocado desplazamientos hacia el sur de la Zona de Convergencia Intertropical Atlántica, y también ha afectado a América (Norte y Sur), y a los sistemas monzónicos africanos y asiáticos.

Es virtualmente seguro que el forzamiento orbital no podrá desencadenar una glaciación generalizada durante los próximos 1000 años. Los registros paleoclimáticos indican que, para configuraciones orbitales cercanas a la actual, los comienzos de la eras glaciares solo ocurrieron para concentraciones de CO2 atmosférico significativamente más bajas que los niveles preindustriales.

 Los modelos climáticos no simulan un inicio glacial durante los próximos 50.000 años si Las concentraciones de CO2 se mantienen por encima de 300 ppm.  Hay un nivel de confianza alto en que los volúmenes de hielo de Groenlandia y las capas de hielo de la Antártida occidental se redujeron durante los períodos de la últimos millones de años que fueron globalmente más cálidos que el presente. Las simulaciones de modelos de la capa de hielo y los datos geológicos sugieren que la capa de hielo de la Antártida Occidental es muy sensible al calentamiento del subsuelo del Océano Austral e implican con confianza media que la capa de hielo de la Antártida Occidental se puede  retirar si la concentración de CO2 atmosférico se mantiene dentro o por encima del rango de 350 ppm a 450 ppm durante varios milenios.

El cambio climático actual ha trastocado múltiples procesos naturales hasta el punto de que algunos de ellos, como las glaciaciones no se producirán con los niveles actuales de CO2  durante miles de años en el futuro.

 

 

sábado, 21 de noviembre de 2015

Conferencia del IPCC en París: ¡las cosas no tienen buena pinta!

Adaptación de una entrevista al profesor Kevin Anderson Publicada en el diario digital Iceland Monitor (ver referencia al final del artículo)
Estamos en tiempo de descuento para alcanzar los  2 °C de calentamiento global y las cosas no se ven bien. Sin embargo en la zona ártica un calentamiento global de 2ºC puede suponer un calentamiento regional de unos 4, 5 o incluso 6 °C.

Profesor Anderson, ¿cuál es su principal preocupación en relación con el rápido cambio climático, especialmente en el Ártico?


Esta no es mi área de especialización. Pero aparte de los impactos en el ecosistema, estoy preocupado por el calentamiento adicional que la pérdida de hielo reflectante producirá (es decir el paso del hielo blanco reflectante al agua oscura absorbente). Es probable que esto tenga algún impacto en la circulación oceánica  pero como digo, esto no es mi área de investigación.
conferencia IPCC en Paris Noviembre 2015
Foto de IcelandMonitor

sábado, 29 de noviembre de 2014

Cambio climatico y simplismo. ¿A más calor menos hielo?

Últimamente escucho o leo conclusiones erróneas sobre los factores que influyen en el cambio climático o sobre el funcionamiento de la atmósfera y el clima.  Dichas conclusiones suelen tener una característica común, que es su simplismo. Es sistema climático entendido como un todo es un sistema complejo en el que juegan un papel determinante el sol, la atmósfera, el océano y las capas polares aparte de un papel menor un sinfín de factores menores que no por ello cabe menospreciar.

Por desgracia algunos grupos de presión política o económica se aprovechan de esta complejidad del sistema climático para escribir artículos de opinión rechazando la validez de las hipótesis científicas sobre el  cambio climático. Y de este modo generando un rechazo de la masa social a cualquier cambio que limite las emisiones de CO2.

Buffalo blizzard 11-19-2014
Nevada de efecto lago en Buffalo. 19 de Noviembre de 2014. Foto de New York Times.

sábado, 27 de septiembre de 2014

Inventario mundial de glaciares, el inventario Randolph

Presento a continuación el Inventario de Glaciares Randolph, que fue publicado la pasada primavera y consiste en un inventario digitalizado y con datos normalizados de todos los glaciares del mundo fuera de los casquetes de hielo de la Antártida y Groenlandia.
El año pasado hice un estudio sobre el estado actual de los glaciares Pirenaicos y me llevó varios días de trabajo, este estudio no es tan riguroso en los límites glaciares ni en su ubicación ni su número, pero abarca a todos los glaciares del mundo excepto las capas de hielo de Groenlandia y la Antártida. Lo cual se me antoja una tarea titánica, no sólo el inventario en sí. Sino el hecho de que los glaciares están cambiando constantemente, aunque el informe es estático, es decir mide el área glaciar en un determinado momento, de este modo permitirá  poder comparar con informes posteriores.

Randolf Glacier Inventory
Glaciares en Alaska, fotografía cortesía de Chus Meneses.