Monte Perdido

Monte Perdido

sábado, 8 de abril de 2023

Fusión basal suprimida en la zona Este de la línea de tierra del glaciar Thwaites

Peter E. D. Davis , Keith W. Nicholls, David M. Holland, Britney E. Schmidt,Peter Washam, Kiya L. Riverman, Robert J. Arthern, Irena Vaňková, Clare Eayrs, James A. Smith, Paul G. D. Anker, Andrew D. Mullen, Daniel Dichek, Justin D. Lawrence,Matthew M. Meister, Elisabeth Clyne, Aurora Basinski-Ferris, Eric Rignot,Bastien Y. Queste, Lars Boehme, Karen J. Heywood, Sridhar nandakrishnan &Keith Makinson

https://doi.org/10.1038/s41586-022-05586-0

Igual que el artículo del mes pasadoeste artículo puede ser bastante árido para los profanos pues está casi traducido literalmente del original. El próximo mes pondré un resumen más digerido de este artículo y el del mes pasado.

Introducción 

El glaciar Thwaites es uno de los sistemas de hielo y océano que cambia más rápidamente en la Antártida. Gran parte de la capa de hielo dentro de la cuenca del glaciar Thwaites se encuentra por debajo del nivel del mar sobre un lecho rocoso que se profundiza tierra adentro, haciéndolo susceptible a una pérdida de hielo rápida e irreversible que podría elevar el nivel global del mar en más de medio metro. La tasa y el alcance de la pérdida de hielo, y si procede de manera irreversible, está determinada por las condiciones oceánicas y basales ambas en gran parte desconocidas, dentro de la región de la zona de puesta a tierra donde el glaciar Thwaites sale a flote por vez primera. 

Aquí se muestran las  observaciones realizadas en un pozo perforado cerca de  la zona de puesta a tierra de la plataforma de hielo oriental de Thwaites (TEIS) zona, caracterizada por una columna de agua cálida y altamente estable con temperaturas sustancialmente superiores al punto de congelación in situ. A pesar de estas condiciones cálidas, las bajas velocidades de la corriente y la fuerte estratificación de densidad en la capa límite hielo-océano restringen activamente la mezcla vertical de calor hacia la base de hielo, lo que da como resultado una fusión basal de hielo fuertemente suprimida. El modelo canónico de fusión basal de la plataforma de hielo utilizado para generar proyecciones del nivel del mar no puede reproducir las tasas de fusión observadas debajo este glaciar de importancia crítica, y el retroceso rápido y posiblemente inestable de la línea de puesta a tierra, puede estar asociado con tasas de fusión basal relativamente modestas.

Descripción del proyecto

La respuesta de la capa de hielo de la Antártida occidental (WAIS) con base marina a un clima más cálido contribuye con una incertidumbre sustancial a las proyecciones del nivel del mar del siglo XIX. La evolución de la capa de hielo está dinámicamente vinculada al destino de las plataformas de hielo flotantes que se encuentran sobre el mar. Ejerciendo una fuerza resistiva en la línea de puesta a tierra donde la capa de hielo primero sale a flote, el refuerzo de la plataforma de hielo ayuda a controlar el  flujo de hielo sobre tierra hacia el océano. En las últimas décadas, el elevado derretimiento basal impulsado por el océano ha provocado un rápido adelgazamiento de muchas plataformas de hielo antárticas, lo que reduce la resistencia de los contrafuertes de las plataformas de hielo.

La tasa de pérdida de masa de la plataforma de hielo ha aumentado en un 70% entre 1994 y 2012, precipitando un cambio hacia un drenaje más rápido de hielo en el océano. Varias líneas principales de puesta a tierra en el sector marítimo de Amundsen se han retirado rápidamente hacia el interior, lo que plantea la posibilidad de una inestabilidad y colapso del WAIS.

En ninguna parte estos procesos son más evidentes y potencialmente graves que en el glaciar Thwaites, que drena alrededor del 10% del WAIS(Fig. 1). Thwaites está anclado en gran medida bajo el nivel del mar en un lecho retrógrado (es decir, un lecho que se profundiza tierra adentro) y es particularmente susceptible a las inestabilidades de la capa de hielo. Su línea de puesta a tierra se ha retirado 14 km desde fines de la década de 1990 y, en algunas regiones, está retrocediendo hasta 1,2 km por año en la actualidad. Es posible que Thwaites ya haya entrado en un estado de pérdida rápida e irreversible de hielo, y su colapso completo en siglos contribuiría con 65 cm al nivel global del mar. Una desestabilización total de los principales glaciares del sector del Mar de Amundsen contribuiría con 3 m al nivel global del mar en los próximos miles de años. La tasa y el alcance de pérdida de hielo del glaciar Thwaites, y si procede irreversiblemente, es altamente sensible a las condiciones oceánicas poco conocidas y a la velocidad basal de fusión en la región de la zona de puesta a tierra en constante evolución.

Se perforó un orificio a través de 587 m de hielo aproximadamente 1,5-2,0 km aguas abajo de la línea de puesta a tierra actual (Fig. 1) en la 'mariposa' relativamente accesible región del TEIS.  Se usó un perfilador de profundidad (CTD) para muestrear la estructura hidrográfica de la columna de agua de 54 m de profundidad, su conductividad y temperatura, mientras que un vehículo submarino llamado Icefin operado remotamente midió la variabilidad espacial en las condiciones del océano hasta la línea de puesta a tierra. Las tasas de fusión basal a largo plazo en cinco diferentes sitios (Fig. 1).

Fusión basal suprimida en la zona Este de la línea de tierra del glaciar Thwaites

Figura 1  Mapa del glaciar Thwaites y ubicación de las observaciones utilizadas en este estudio. 

a, imagen satelital Landsat 8 del glaciar Thwaites y la ubicación del orificio de acceso perforado con agua caliente (estrella amarilla; 75,207° S, 104,825° W) en el región de "mariposa" de la zona de conexión a tierra de TEIS (mapa recuadro). Contornos de color azul con sombreado muestran la profundidad del lecho en el mar de Amundsen a partir de un estudio realizado desde un barco. Los puntos lila, verde y naranja muestran la ubicación de Perfiles de CTD basados en barcos de 2019-2020 del proyecto glaciar internacional Thwaites. La línea de costa (negra) y la línea de puesta a tierra (púrpura). El mapa inserto muestra el detalle de la región de “mariposa” de la zona de puesta a tierra. Los contornos de color verde-marrón con sombreado muestran la profundidad del lecho. El área azul muestra la ubicación de la región de la zona de conexión a tierra de 2016-201, mientras que las líneas sólidas negras y grises muestran la posición de la línea de puesta a tierra en 2019 y 2021, respectivamente. Los diamantes verdes, morados, naranjas y amarillos muestran la ubicación de los instrumentos que miden la tasa de fusión basal. El rojo (T1) y las líneas naranja (T2) muestran los transectos tomados por el vehículo Icefin. 

b, Descripción general de la con la ubicación del glaciar Thwaites mostrada en un recuadro rojo. Las líneas negras delgadas delimitan las cuencas principales cuencas de drenaje de la capa de hielo, con la Cuenca de drenaje de Thwaites resaltada en azul. 

Estructura de la columna de agua e hidrografía

La zona de encalladura se caracteriza por aguas cálidas y saladas en profundidad, con agua más fría en la base del hielo (Fig. 2a). La conducción térmica  cerca de la interfaz hielo-océano (un parámetro clave para controlar el derretimiento basal) alcanza 1.54 °C, similar a la observada debajo de la plataforma de hielo de Pine Island. Una capa límite basal altamente estratificada en salinidad se ve dentro de los 2 m del límite hielo-océano, donde el fuerte gradiente en salinidad absoluta (SA) crea una fuerte barrera para la mezcla vertical (Datos extendidos Figura 1a). Aunque la densidad en las regiones polares está determinada por la salinidad y, por lo tanto, la columna de agua de la zona de conexión a tierra está estratificada de manera estable (Fig. 2c), El gradiente vertical de temperatura  (Θ) es inestable con respecto a la densidad (es decir, el agua fría se encuentra sobre el agua caliente) y la columna de agua puede ser susceptible a la convección difusiva. Aunque este proceso de doble difusión podría proporcionar una fuente limitada de energía para la mezcla vertical, con una relación de densidad promedio de solo 0.2 y un Ángulo de Turner de −57°, el gradiente de temperatura es demasiado débil para sostener una escala termohalina (Datos extendidos Fig. 1b). Bajo La variabilidad entre los valores de la CTD indica que los gradientes laterales de temperatura y salinidad son débiles.

La fusión basal es forzada por una masa de agua de una sola fuente: Agua profunda circumpolar modificada (mCDW). El CTD basado en pozos y el vehículo Icefin los datos se encuentran predominantemente en una línea recta en el espacio Θ–SA con un gradiente de 2,40 ± 0,01 °C (g kg−1)−1 (Fig. 2c). El gradiente es consistente con esto. Cuando el agua de deshielo glacial de la fusión basal es impulsada por el océano se mezcla con agua del mar de la zona. Las propiedades de la fuente mCDW pueden determinarse trazando la línea de mezcla del agua de deshielo hasta su intersección con la termoclina principal mCDW–Agua de invierno (WW) fuera de la cavidad de la plataforma de hielo (Fig. 2c). La fuente mCDW tiene un valor de Θ de 0,16 °C y un valor de SA de 34,62 g  por kg, con una densidad potencial de 1.027,66 kg por metro cúbico. La mCDW con tal densidad se encuentra a una profundidad de alrededor de 528 m fuera la cavidad de la plataforma de hielo. La mCDW que alimenta la zona de puesta a tierra probablemente se origina en la bahía de Pine Island; sin embargo, no se puede descartar una fuente más al norte de Thwaites (Fig. 1). La bien mezclada capa inferior, los datos de CTD cambian a una mezcla de agua de deshielo ligeramente más cálida línea (fuente de agua Θ = 0,18 °C; Fig. 2c, recuadro), lo que indica que la zona es alimentada por un mCDW ligeramente más cálido.

El agua de deshielo glacial juega un papel central en el control de la circulación oceánica alrededor de la Antártida. En el pozo, el agua de deshielo glacial es encontrada en toda la columna de agua, con una concentración superior a 10 ± 2 ml por litro en la base de hielo (Fig. 2b). La distribución del agua de deshielo indica que el agua del océano en todas las profundidades ha interactuado con la base de la plataforma de hielo, en consonancia con la estrecha columna de agua y la proximidad a la línea de tierra. En la propia línea de puesta a tierra, la concentración de agua  glaciar deshielo observada por Icefin alcanza un valor máximo de aproximadamente 31 ml por litro (Fig. 2c). Esto está cerca del valor de saturación de aproximadamente 35 ml por litro, en cuyo punto Θ está en la congelación in situ y no puede ocurrir más fusión basal.

 

Hidrografía y contenido de agua de deshielo debajo de TEIS

Figura 2  Hidrografía y contenido de agua de deshielo debajo de TEIS. a, b, perfiles verticales de temperatura de conservación (Θ; rojo) y salinidad absoluta (SA; azul) (a) contenido de agua de deshielo glacial (gris) (b) recopilados durante 4 días (del 9 al 12 de enero 2020) en la región de la zona de puesta a tierra del glaciar Thwaites (estrella amarilla en la Fig. 1). La base del hielo está indicada por el cuadro gris sombreado y el lecho marino está indicado por la línea inclinada hacia atrás. 

c, diagrama Θ–SA con contornos σ0 (densidad) para el CTD de la zona de conexión a tierra y datos de Icefin (puntos grandes coloreados por profundidad) y datos (pequeños puntos coloreados por ubicación: naranja para Thwaites Trough, púrpura para la bahía de Pine Island y verde para aguas arriba que coincidan con los colores utilizados para indicar su ubicación en la Fig. 1). La línea negra sólida indica el ambiente Termoclina mCDW-WW. La línea naranja discontinua indica el agua de deshielo línea de mezcla que caracteriza los datos de la zona de puesta a tierra. El gran punto negro indica dónde esta línea de mezcla de agua de deshielo se cruza con la termoclina ambiental del mCDW–WW. Los guiones naranjas gruesos en la línea de mezcla de agua de deshielo indican Intervalos de 5 ml por litro en el contenido de agua de deshielo glacial, comenzando en 0 ml por litro en el punto negro grande. La línea negra discontinua indica la temperatura de congelación in situ en función de la salinidad en la línea de puesta a tierra. Las cajas rojas y azules con el contorno negro indican el rango de valores miembros finales de Θ y SA de mCDW y WW. Los ejes insertados en c muestran la relación Θ–SA coloreada por la profundidad (nótese la escala de color diferente) para los datos CTD del bentos bien mezclado capa límite (recuadro morado en el gráfico principal). La línea naranja discontinua indica la línea de mezcla de agua de deshielo ligeramente más cálida que caracteriza los datos de esta región de la columna de agua.

Variabilidad temporal de las condiciones oceánicas

Las condiciones del océano en el mar de Amundsen varían en una amplia gama de escalas de tiempo y afectan las propiedades del océano y la tasa de fusión basal debajo las plataformas de hielo marginales. Entre enero y septiembre de 2020, la zona de puesta a tierra se volvió más cálida y salada (Fig. 3a). En el espacio Θ–SA, las propiedades hidrográficas evolucionaron a lo largo de una trayectoria que se encuentra en un ángulo a la línea de mezcla de agua de deshielo desde el perfil CTD (Fig. 3d). Esta trayectoria solo puede explicarse por un cambio en la fuente de agua. Para septiembre de 2020, los valores de Θ y SA de la alimentación de mCDW de la zona de puesta a tierra aumentó a 0,43 °C y 34,69 g por kg, respectivamente, con una densidad potencial de 1.027,70 kg por metro cúbico. Una mCDW con esta densidad se encuentra a una profundidad de alrededor de 584 m fuera de la cavidad de la plataforma de hielo. La  profundidad del lecho marino y la pendiente del lecho rocoso prógrado en el pozo (Fig. 4a) evita que este mCDW más denso llegue a la zona de puesta a tierra directamente. En cambio, la termoclina mCDW-WW fuera de la plataforma de la cavidad de hielo debe haber  inundando la zona de puesta a tierra con cada vez más mCDW más cálida. La variabilidad a largo plazo en la profundidad de la termoclina está controlado en gran medida por tendencias que evolucionan lentamente en el forzamiento remoto del viento en la ruptura de la plataforma continental del Mar de Amundsen. Superpuesta a la tendencia al calentamiento son pulsos cortos de calentamiento y enfriamiento (por ejemplo, abril y junio de 2020; Fig. 3a), que probablemente son impulsadas por el viento local y el forzamiento del hielo marino que modifica la densidad y la temperatura del océano y genera remolinos y ondas internas que se propagan en la cavidad de la TEIS. Durante este período, la conducción térmica aumentó en 0,36 °C (Datos ampliados Fig. 2a), aunque una gran proporción se puede asociar con la distancia cada vez mayor entre el amarre del océano y la interfaz hielo-océano que resulta de la fusión basal.

Al mismo tiempo, la concentración de agua de deshielo glacial aumentó de aproximadamente 11,0 ml por litro a aproximadamente 13,4 ml por litro  (Fig. 3b). A partir de septiembre de 2020, la SA comienza a caer, mientras que Θ se mantiene constante a -0,2 °C (Fig. 3a). En el espacio Θ–SA, las propiedades hidrográficas evolucionan a lo largo de una trayectoria horizontal, que no puede explicarse por un cambio en masa de agua de origen (ya que las líneas de mezcla de agua de deshielo ya no se cruzan con la termoclina mCDW-WW). En cambio, esta trayectoria es indicativa de agua dulce procedente de la descarga subglaciar en la línea de puesta a tierra (Fig. 3b, d). Las aguas subglaciares debajo de Thwaites provienen del derretimiento basal de hielo puesto a tierra que resulta del flujo rápido de hielo y un gran estrés de cizalladura basal. Existe un sistema hidrológico persistente aguas arriba de Thwaites línea de conexión a tierra (Datos extendidos Fig. 3), junto con lagos subglaciares que exhiben eventos episódicos de drenaje y llenado. Este sistema hidrológico se reconfigura constantemente como resultado de cambios en el volumen de producción de agua de deshielo y la dinámica de los glaciares, y facilita un flujo de agua de deshielo hacia la línea de puesta a tierra en una red canalizada, donde se descarga en el punto de congelación dependiente de la presión (Datos extendidos Fig. 3). Aunque no se pueden explicar los mecanismos responsables para controlar los eventos de descarga, la evidencia sedimentaria indica que descarga subglaciar debajo de TEIS tiende a ocurrir en pulsos, consistente con el inicio repentino que observamos (Fig. 3b). Posibles mecanismos incluyen un cambio en la red de drenaje para favorecer la descarga debajo de TEIS o el inicio de un evento de drenaje de un lago subglaciar. La descarga subglaciar está vinculada a los cambios en la fricción basal y la velocidad de la corriente de hielo, y por lo tanto tiene el potencial de modular el flujo de hielo hacia el océano. Además, la entrada de agua dulce subglaciar impulsará una interacción compleja entre la mejora impulsada por la densidad en la circulación debajo de la plataforma de hielo que debería

 

Evolución temporal de las condiciones hidrográficas, contenido de agua de deshielo y tasa de fusión basal del glaciar Thwaites

Figura 3  Evolución temporal de las condiciones hidrográficas, contenido de agua de deshielo y tasa de fusión basal. 

a, Serie de tiempo promedio diario de temperatura conservadora (Θ; rojo) y salinidad absoluta (SA; azul) del amarre oceánico desplegado 1,5 m debajo de la base de hielo. 

b, agua de deshielo glaciar (gris) y escorrentía subglaciar (azul) derivada de las observaciones de Θ y SA. 

c, Tasa de fusión basal observada (líneas verde, violeta, amarilla y naranja) filtrado de paso bajo con un límite de 15 días trazado contra la tasa de fusión basal estimada a partir de la tasa de fusión de tres ecuaciones modelo (línea gris). Los colores de línea para la tasa de fusión basal,  las series de tiempo en c coinciden con sus ubicaciones en la Fig. 1. d, diagrama Θ–SA con contornos σ0 para los datos de la serie temporal en un color en función del tiempo. Las líneas de puntos azul y rojo son líneas de mezcla de agua de deshielo que se ajustan a los datos observados para enero 2020 (azul) y agosto de 2020 (rojo). La línea de puntos púrpura es una línea de mezcla entre los valores de la zona de puesta a tierra Θ y SA en agosto de 2020 y salida de agua subglaciar fría. La línea negra sólida indica la termoclina mCDW–WW ambiental de datos CTD (Fig. 2c), mientras que el cuadro sombreado en rojo indica el rango de valores de Θ y SA del extremo mCDW. Los puntos grises muestran los datos CTD de el pozo 

e, Vectores de velocidad del medidor de corriente debajo del hielo coloreados como función del tiempo. Los contornos radiales indican la velocidad del flujo en cm s por segundo.

impulsar una fusión basal más fuerte y fortalecer la estratificación de la capa límite eso debería suprimir la fusión basal. Las velocidades actuales de la base del hielo son clave para establecer las tasas de derretimiento basal. Las velocidades de flujo son débiles, con un promedio de 2,4 cm por segundo (Fig. 4a, b y Datos extendidos Fig. 4a). La variabilidad de las mareas es limitada y está dominada por las corrientes diurnas constituyentes (datos extendidos, figura 4c). El flujo es orientado paralelamente a la línea de puesta a tierra (Fig. 4), con aguas más frías cargadas de agua de deshielo que fluyen hacia el este en la capa superior, mientras que las aguas derivadas de mCDW más cálidas y saladas fluyen hacia el oeste en la capa inferior. La dirección del flujo en la región de la zona de la “mariposa” es fuertemente dirigida por la topografía y no es necesariamente representativa del flujo hacia el oeste generalmente esperado debajo de TEIS. La magnitud de la velocidad, el calor y la mezcla de sal en la plataforma de hielo. La capa límite del océano es difícil de medir y contribuye a la incertidumbre sustancial al modelar el comportamiento futuro de la capa de hielo antártica. Aquí podemos derivar indirectamente la primera estimación de la viscosidad del remolino debajo de TEIS examinando el límite de Ekman, la capa que se forma en la base del hielo. Bajo la influencia de la rotación y tensiones de fricción, la dirección del flujo observada por Icefin gira progresivamente en el sentido de las agujas del reloj a medida que se acerca al límite, generando un flujo transversal en la base del hielo (Fig. 4c). 

Este mismo comportamiento de es observado por el medidor de corriente del pozo pero emerge en función del tiempo como la distancia entre el hielo base y el instrumento aumenta a medida que se derrite el hielo basal. La dirección del  flujo oscila persistentemente en sentido contrario a las agujas del reloj desde el sureste en enero 2020 al noreste en agosto de 2020 (Fig. 3e y datos extendidos Fig. 4b), después de lo cual la profundidad del instrumento excede la profundidad de Ekman y la dirección del flujo ya no se establece principalmente por la distancia desde el Perímetro.

Secciones transversales y perfiles verticales de velocidad y dirección de corriente en el glaciar Thwaites

Figura 4  Secciones transversales y perfiles verticales de velocidad y dirección de corriente.

a,b, Velocidad y dirección del flujo en la región de la zona de puesta a tierra para el transecto T1 (a) y transecto T2 (b) (ver panel insertado en la Fig. 1). Los puntos de datos individuales son coloreados por la velocidad del flujo, con colores azules que indican el flujo hacia el este  y los colores rojos que indican flujo hacia el oeste. La trayectoria del vehículo  está indicada por la línea gris, con la plataforma de hielo y el fondo del mar indicado por la parches de color gris claro y gris oscuro, respectivamente. La línea verde en a marca la ubicación del pozo, y el cuadro morado indica la región de la columna de agua trazada en c. El recuadro en a son vectores de velocidad geográfica coloreados por un flujo de velocidad para los datos combinados de T1 y T2. Los contornos radiales indican flujo velocidad en cm por segundo. Los triángulos en a y b marcan la ubicación de la línea de puesta a tierra histórica ubicaciones estimadas a partir de interferometría satelital en 2011 (blanco) y la estimación aguas abajo más lejana en 2016 (azul). c, u velocidad hacia el este (azul), v velocidad hacia el norte (rojo) y dirección geográfica del flujo dentro de los 14 m del hielo base a unos 2.000 m de la zona de puesta a tierra a lo largo de T1 (recuadro morado en el panel a). Las líneas negras continuas y de puntos discontinuos muestran la u (punto discontinuo) y la v (continua) perfiles de velocidad de un modelo analítico de un límite de Ekman bajo la capa de hielo. 

d, perfil de velocidad promedio coloreado por velocidad de flujo para todos los datos de velocidad entre 1.300 m y 1.800 m desde la zona de puesta a tierra a lo largo del transecto T1 (líneas de puntos negros en el panel a) y entre 1.210 m y 1.580 m desde el zona de conexión a tierra a lo largo del transecto T2 (líneas negras discontinuas en el panel b).

Derretimiento basal de la plataforma de hielo

A pesar de la alta conducción térmica (datos extendidos, Fig. 2a), el derretimiento basal las tasas promedian no más de 2.0–5.4 m por año (Fig. 3c).  Se han observado tasas de fusión basal desde al menos 2019 (Datos extendidos Fig. 5) y probablemente han persistido durante mucho más tiempo en función de la probable tendencia en las condiciones del océano (discutido en más detalle más adelante). La tasa basal de fusión varía entre diferentes lugares y aumenta gradualmente con el tiempo;  tampoco es más alta en la línea de puesta a tierra. Las variaciones espaciales en la tasa de fusión están probablemente asociadas con patrones de flujo locales y la variabilidad en la topografía de la base de la plataforma de hielo, así como la proximidad a la línea de puesta a tierra, donde la más delgada columna de agua, controlada por la fricción con velocidades de corriente más bajas  (Fig. 4) y una conducción térmica más débil (Fig. 2c) restringe la fusión basal.

El derretimiento basal, controlado por la velocidad a la que se mezclan los océanos turbulentos transporta calor y sal verticalmente a la base de la plataforma de hielo a través de la capa límite de la plataforma hielo-océano, está altamente suprimida debajo de TEIS por la fuerte estratificación y el ambiente oceánico inactivo. Se han identificado diferentes regímenes de turbulencia en la capa límite dependiendo de la fuerza relativa de la corriente vertical y la flotabilidad forzamiento: control de cizallamiento bien mezclado, control de flotabilidad estratificada y difusivo-convectiva. Como la capa límite debajo de TEIS está caracterizada por velocidades de corriente débiles (Fig. 4) y fuerte estratificación (Fig. 2a), se excluye el régimen controlado por cizallamiento bien mezclado. El gradiente de temperatura es demasiado débil para sostener una fuerte turbulencia difusión-convección (Datos extendidos Fig. 1b) y por tanto el transporte de calor a través de la capa límite está predominantemente controlado por capas dinámicas estratificadas  de turbulencia.

En este régimen, las velocidades de flujo débiles no pueden generar suficiente turbulencia impulsada por la cizalla para superar la estratificación estable de la base de hielo, que suprime fuertemente el flujo de calor y salinidad verticales a la base del hielo y, en última instancia, la tasa de fusión basal, a pesar del fuerte forzamiento térmico (Fig. 2a). En el régimen de flotabilidad debajo de TEIS, la fusión basal está limitada en gran medida por la densidad de la estratificación y la velocidad de la corriente, que controlan el transporte de calor a la base de hielo, en lugar de por la cantidad de calor disponible. TEIS ya exhibe niveles excesivos de conducción térmica (es decir, hay más calor oceánico disponible que el requerido para mantener la fusión basal) y el aumento de temperatura requerido para impulsar sustancialmente una fusión basal más alta, estas tasas son probablemente inviables. En cambio, el orden de magnitud aumenta en la fusión basal, y solo será impulsada por una aceleración a gran escala en la circulación oceánica o un marcado debilitamiento de la estratificación de la base del hielo. 

El modelo de ecuaciones para la fusión basal de la plataforma de hielo es ampliamente utilizado para generar proyecciones del nivel del mar, sin embargo está formulado exclusivamente para un régimen de turbulencia mixta, en el que la tasa de fusión depende únicamente del producto de la conducción térmica y la velocidad de flujo. Esta formulación no es apropiada para TEIS. Cuando se fuerza con las velocidades de corriente observadas y la conducción térmica, predice tasas de fusión superiores a 14 m por año, con un máximo de 32 m por año, a menudo superando los valores observados en más de un orden de magnitud (Fig. 3c). Esta discrepancia surge a medida que el modelo se aproxima a la transferencia turbulenta de calor y sal a través de la plataforma de hielo-océano en la capa límite usando coeficientes de transferencia que no asumen ninguna influencia de estratificación. Por lo tanto, en el régimen estratificado, se sobreestima sustancialmente la eficiencia del transporte de calor y sal a través de la capa límite y, por lo tanto, predice en exceso la magnitud de  la tasa de fusión basal (Fig. 3c). Además, esta dependencia incorrecta en la conducción térmica y la velocidad del flujo significa que las ecuaciones no pueden simular la variabilidad observada, prediciendo una caída en las tasas de fusión basal a partir de mayo de 2020 en adelante debido a velocidades de corriente más débiles, en contraste con las observaciones (Fig. 3c  y datos extendidos Fig. 4a). Aunque los coeficientes de transferencia en el modelo de ecuaciones podría reformularse para incluir algunas funciones de dependencia de la estratificación, en última instancia, el conocimiento de la estructura vertical de densidad y velocidad a través de la plataforma de la capa límite hielo-océano, el conocimiento del que se carece ampliamente en la actualidad, debe ser incorporado en parametrizaciones más sofisticadas para precisar predecir las tasas de fusión en condiciones estratificadas.

Gran parte de la línea de puesta a tierra actual debajo de TEIS se encuentra en un cresta de lecho rocoso que corre de noreste a suroeste debajo del hielo estante (Datos ampliados Fig. 6a). La profundidad del lecho a lo largo de la línea de puesta a tierra es relativamente constante y generalmente no más profunda que el de la región “mariposa” (Datos extendidos Fig. 6b). Es poco probable que la zona de conexión a tierra de TEIS sea sustancialmente más alta que el valor observado. Las débiles condiciones de fusión basal observadas contrastan con los modelos numéricos, que sugieren que en el TEIS las tasas de fusión basal de la zona de puesta a tierra son un orden de magnitud más altas.

Las modestas tasas de fusión observadas no son representativas del tronco principal del glaciar Thwaites, que se caracteriza por muchos ángulos de talud basal más pronunciados y está asentado sobre un lecho rocoso   a más de 1,000 m por debajo nivel del mar (Datos ampliados Fig. 6b). Como tal, la fusión basal en esta zona podría ser mucho más alta. 

A pesar de la fusión basal débil en toda la zona de puesta a tierra de TEIS, la línea de puesta a tierra se ha retirado rápidamente a una velocidad de 0,6–1,2 km por año  entre 2011 y 2017. Aunque la tasa de retirada es espacialmente variable, la línea de puesta a tierra ha continuado retrocediendo durante el período cubierto por nuestras observaciones de tasa de fusión (2019-2021), alcanzando ampliamente 0,4 km por año en toda la región de la “mariposas”, con un máximo >1,5 km por año (Fig. 1). Así, nuestras observaciones sugieren que la rápida retirada de la línea de puesta a tierra debajo de TEIS desde 2011 probablemente ha sido asociada con tasas de fusión basales relativamente modestas. Efectivamente, ni el aumento en el forzamiento térmico asociado con la puesta a tierra más profunda de 2011 línea (alrededor de 0,7 ° C más alto; datos extendidos Fig. 6c) ni la variabilidad interanual en la profundidad de la termoclina en la bahía de Pine Island, son suficientes para impulsar cambios de orden de magnitud en la fusión basal, en consonancia con el régimen de turbulencia estratificada. La fuerte estratificación observada en la base del hielo que es responsable de suprimir la tasa de derretimiento basal es probablemente muy persistente, mantenida por la entrada de agua de deshielo glacial y descarga subglaciar (Fig. 3b). Al mismo tiempo, hay poca evidencia oceanográfica que sugiera que las velocidades actuales habrían sido mucho mayores en el pasado para erosionar esta estratificación, ya que la región está sujeta a fuerzas de marea débiles, controladas por fricción las columnas de agua cercanas a las líneas de puesta a tierra con una base plana de hielo no son propicias para un flujo rápido. Sin embargo, junto con el derretimiento en la vecindad del punto de fijación hacia el mar de TEIS, incluso la relativamente modesta fusión basal en la zona de puesta a tierra todavía puede forzar un cambio notable en el hielo. Un pequeño aumento en la fusión basal puede crear un gran desequilibrio de fusión que desencadenaría el adelgazamiento inducido por fusión de TEIS y conduce a una reducción del arrastre basal en la línea de puesta a tierra. La reducción de la base debilitaría la tensión trasera impuesta por la plataforma de hielo, lo que resulta en una pérdida de refuerzo y adelgazamiento dinámico del hielo almacenado aguas arriba. 

A medida que este hielo más delgado sale a flote, la línea de conexión a tierra puede retirarse rápidamente hacia el interior y hacia arriba de la pendiente del lecho rocoso. Aunque los modelos de hielo y océano sugieren que las altas tasas de fusión basal debajo del hielo flotante pueden proporcionar un fuerte efecto positivo de retroalimentación para continuar con la retirada, los resultados indican que esta retroalimentación es débil. Sin embargo, la fusión basal sostenida de la zona de puesta a tierra, debilita el refuerzo de la plataforma de hielo y la advección de hielo cada vez más delgado sobre la línea de puesta a tierra continuará condicionando TEIS a una retirada persistente en el futuro, incluso sin una fuerte retroalimentación positiva de fusión basal elevada.

Datos extendidos

 

Perfiles verticales de frecuencia de flotabilidad glaciar Thwaites

Datos extendidos Fig. 1 Perfiles verticales de frecuencia de flotabilidad, relación de densidad y ángulo de Turner. a,b, Perfiles verticales individuales de frecuencia de flotabilidad (N)  (a) y perfil vertical promedio de la relación de densidad (azul) y ángulo de Turner (rojo) (b) recogidos durante 4 días (9 al 12 de enero de 2020) en la zona de puesta a tierra región del glaciar Thwaites (estrella amarilla en la Fig. 1). Se indica la base de hielo por el recuadro gris sombreado y el lecho marino se indica por la línea inclinada hacia atrás.

 

Conducción térmica y tasa de fusión basal del glaciar Thwaites

Datos extendidos Fig. 2 Conducción térmica y tasa de fusión basal de las ecuaciónes modelo de velocidad de fusión. a,b, Serie de tiempo promedio diario de conducción térmica (rojo) (a) y tasa de fusión basal (azul) (b) predicha por la tasa de fusión de las ecuaciones modelo. Las líneas grises en a y b muestran la conducción térmica y tasa de fusión basal corregida por los efectos de la recesión de la base del hielo usando la vertical perfiles de Θ y SA de los datos CTD.

 

Descarga subglacial debajo del glaciar Thwaites

Datos extendidos Fig. 3 Descarga subglacial debajo del glaciar Thwaites. Imagen satelital Landsat 8 del glaciar Thwaites y la ubicación de la perforación (estrella amarilla; 75,207° S, 104,825° W) en la zona de puesta a tierra región 'mariposa' de TEIS. Contornos de color blanco-azul con sombreado de profundidad del lecho en el mar de Amundsen, mientras que los contornos de color verde muestran vías de agua dulce subglaciar y tasa de descarga. Los puntos morados, verdes y naranjas muestran la ubicación de Perfiles de CTD. La línea de costa (negra) y la línea de tierra (púrpura). El área sombreada en azul muestra la ubicación de la región de la zona de conexión a tierra de 2016-2017.  

Velocidad de flujo, dirección y elipses de marea en el glaciar Thwaites
Datos extendidos Fig. 4 Velocidad de flujo, dirección y elipses de marea. a, b, diarios de serie de tiempo promedio de la velocidad del flujo (a) y la dirección geográfica del flujo (b) el medidor de corriente se desplegó a unos 1,5 m por debajo de la base de hielo en la zona de conexión a tierra región del glaciar Thwaites (estrella amarilla en la Fig. 1). Para la dirección de flujo, 0°  indica flujo hacia el norte, 90° indica flujo hacia el este y 150° indica flujo hacia el sur -sureste. c, Amplitud y orientación geográfica de las principales constituyentes de marea diurna (azul) y semidiurna en la ubicación del pozo (estrella amarilla). Las líneas sólidas indican elipses con eje semi-menor positivo (rotación en sentido contrario a las agujas del reloj en el tiempo), mientras que las líneas discontinuas indican elipses con ejes semi-menor negativo (rotación en el tiempo en el sentido de las agujas del reloj). El polígono azul muestra la ubicación de la región de la zona de conexión a tierra de 2016-2017, y el área gris muestra dónde está conectado a tierra el hielo. 

 

Series de tiempo extendidas de la tasa de fusión basal en el glaciar Thwaites

Datos extendidos Fig. 5 Series de tiempo extendidas de la tasa de fusión basal en la ubicación del pozo. Tasa de fusión basal observada (amarillo) en el pozo ubicación (2020; estrella amarilla en la Fig. 1) y una ubicación secundaria 360 m aguas abajo de la ubicación del pozo (2019; rombo amarillo en la Fig. 1) filtrado de paso bajo con  un límite de 15 días trazado frente a la tasa de fusión basal estimada a partir de las ecuaciones modelo de tasa de fusión (gris).

 

Profundidad del lecho rocoso a lo largo de la puesta a tierra del glaciar Thwaites

Datos extendidos Fig. 6  Profundidad del lecho rocoso a lo largo de la puesta a tierra del glaciar Thwaites línea verde. a, imagen Sentinel-2 de TEIS y tronco principal de Thwaites del 9 de febrero de 2019. Los contornos coloreados muestran la profundidad del lecho cuadriculado debajo del hielo a tierra. Datos recopilados sobre el glaciar Thwaites entre el 1 de enero de 2006 y el 31 de diciembre 2012. El área verde indica la ubicación de la zona de puesta a tierra de 2016-2017, mientras que la estrella amarilla indica la ubicación de la perforación. b, perfil de la profundidad del lecho a lo largo de la línea de puesta a tierra actual debajo de TEIS y el tronco principal de Thwaites.  La línea punteada en 106° W marca el límite entre TEIS y el tronco principal de Thwaites. c, Perfiles de base de hielo (gris claro) y fondo marino (gris oscuro) del Transecto Icefin T1. El triángulo blanco marca la ubicación de la puesta a tierra de 2011. Línea de interferometría satelital. 

 

Diagrama de temperatura-salinidad en el glaciar Thwaites

Datos ampliados Fig. 7 Diagrama de temperatura-salinidad y mezcla lineal entre las principales masas de agua debajo de la plataforma de hielo. Líneas de mezcla lineal entre mCDW (recuadro rojo), WW (recuadro azul), MW glacial y SD, junto con Θ– Observaciones SA de cada molde CTD individual (puntos grises) y la plataforma de amarre bajo el hielo (puntos coloreados con indicación temporal). Tener en cuenta que las propiedades de los miembros finales de MW y SD quedan fuera del rango de los ejes. Desde el final de septiembre de 2020 en adelante, las observaciones individuales de Θ–SA se encuentran por encima de la  línea de mezcla mCDW-MW, que indica la presencia de descarga subglaciar y la insignificante influencia de WW.


domingo, 12 de marzo de 2023

Fusión heterogénea en el glaciar Thwaites

Traducción adaptada del artículo:

Heterogeneous melting near the Thwaites Glacier grounding line

B. E. Schmidt, P. Washam, P. E. D. Davis, K. W. Nicholls, D. M. Holland,J. D. Lawrence, K. L. Riverman, J. A. Smith, A. Spears, D. J. G. Dichek, A. D. Mullen, E. Clyne, B. Yeager, P. Anker, M. R. Meister, B. C. Hurwitz, E. S. Quartini, F. E. Bryson, A. Basinski-Ferris, C. Thomas, J. Wake, D. G. Vaughan, S. Anandakrishnan, E. Rignot, J. Paden & K. Makinson

https://doi.org/10.1038/s41586-022-05691-0

Para los profanos puede ser un artículo bastante árido, pues está casi traducido literalmente del original. Próximamente pondré un resumen más digerido de este artículo y otro similar.

Introducción

El glaciar Thwaites representa el 15% de la descarga de hielo de la capa de hielo antártico occidental e influye en una cuenca más amplia. Al introducirse el hielo bajo el nivel del mar, se cree que el glaciar Thwaites es susceptible a un retroceso desbocado desencadenado en la línea de puesta a tierra (GL) en la que el glaciar llega al océano. Una reciente aceleración del flujo de hielo y retroceso del frente de hielo y su GL  indican que la pérdida de hielo puede continuar. Sin embargo, los impactos relativos de los mecanismos que subyacen a la reciente retirada son inciertos. 

Se sabe que este glaciar está sufriendo una retirada sostenida de  su GL desde al menos 2011 hasta la actualidad. Se han realizado observaciones de la plataforma de hielo oriental de Thwaites (TEIS) desde un vehículo submarino, extendiéndose desde el GL hasta 3 km hacia el océano y desde la interfaz hielo-océano hasta el suelo marino. Estas observaciones muestran una base de hielo rugoso sobre un lecho marino que se inclina hacia arriba, cerca del GL y una cavidad oceánica en la que el agua más caliente supera los 2 °C por encima del punto de congelación. Los datos más cercanos a la base del hielo muestran que se produce un mayor derretimiento a lo largo superficies inclinadas que se inician cerca de la GL y evolucionan hacia terrazas empinadas.

Este derretimiento pronunciado a lo largo de las paredes empinadas del hielo, incluso en las grietas, produce estratificación que suprime el derretimiento a lo largo de interfaces planas. Estos datos implican que el derretimiento dependiente de la pendiente esculpida bajo la base del hielo y actúa como una respuesta importante al calentamiento del océano.


Visión general

Las condiciones atmosféricas y oceánicas en alta mar fuerzan el calentamiento circumpolar de las aguas profundas en la plataforma continental del Mar de Amundsen, donde contribuyen a la pérdida de hielo y al retroceso de la GL de los glaciares que drenan este sector de la capa de hielo de la Antártida occidental, incluido el glaciar Thwaites. 

El glaciar Thwaites se extiende hacia el mar desde la costa de Walgreen, formando la lengua glaciar de Thwaites (TGT) al oeste y el TEIS que descansa sobre un punto de anclaje saliente del fondo marino (Fig. 1a). Un calentamiento circumpolar de las aguas profundas fluye hacia el glaciar a lo largo de la costa y a través de los canales del lecho marino, donde impulsa el derretimiento. El lecho debajo del hielo se profundiza hasta un máximo de 2.300 m bajo el nivel del mar, haciéndolo susceptible a una retirada a gran escala del derretimiento impulsado por el océano. El colapso del glaciar Thwaites, que en sí representa más de medio metro de potencial global de aumento del nivel del mar, también podría desestabilizar glaciares que representan otros 3 m de futuro aumento del nivel del mar. Los cambios en el sistema Thwaites se han acelerado en los pasados 20 años, lo que resulta en la ruptura de la lengua del glaciar y la propagación de grietas en el TEIS. El retiro reciente de GL ha pasado de retroceder unos 600 m al año a retroceder cerca de 1,2 km al año. Un derretimiento propiciado por aguas oceánicas más templadas junto con un adelgazamiento dinámico provoca que las tasas de flujo de hielo influyan en esta retirada, pero saber exactamente cómo operan estos factores es difícil por la limitación de observaciones generalmente pobres debajo del hielo. 

Las observaciones satelitales, que miden la elevación de la superficie del glaciar, sugieren que el TEIS está adelgazando en promedio 25 metros por década, Considerando que el radar aerotransportado de penetración de hielo que mide directamente espesor del hielo estima tasas de hasta 45 metros por década. Aunque el derretimiento impulsado por el océano influye directamente en la estabilidad del hielo alrededor de la Antártida, pocos datos resuelven la interacción entre la hielo y océano directamente. Los modelos de forzamiento oceánico a menudo están limitados por resolución o parametrizaciones disponibles. En general, los modelos representan plataformas de hielo de manera simple como cuñas de hielo con interfaces planas o curvas y una geometría inferida del fondo marino en función de la distancia desde el presunto GL. Por lo general, se impone una condición de fusión cero en el GL, lo cual es inconsistente con la evidencia de adelgazamiento y retroceso del GL. A pesar de que las pendientes retrógradas del lecho facilitan la retroalimentación positiva en la pérdida de hielo en tierra por fusión  forzada por el océano, los glaciares que descansan sobre laderas progresivas aún enfrentan influencia del agua caliente socavando el hielo. La temperatura y las variaciones de salinidad influyen en la circulación y el intercambio de calor entre el hielo y el océano. 

Fusión heterogénea en el glaciar Thwaites

Fig. 1  El agua tibia llega cerca de la base de hielo retirando la GL de los TEI.

a, las posiciones históricas de GL (líneas de colores) muestran un  retiro notable de la línea de base GL en las últimas dos décadas; La caja roja denota la región de estudio). 

b, c, agua tibia entra cerca a la base de hielo (regiones grises superiores), mostrados por contornos de conducción térmica (Grados por encima del punto de congelación in situ). El hielo (línea negra) y el fondo marino (marrón) Los perfiles de elevación representan la batimetría descendente del hielo y el fondo oceánico. La línea roja y la azul (recuadro) denotan la pista del movimiento de hielo, a lo largo de dos transectos que se acercan al GL, T1 (rojo) y T2 (azul) que se muestran en el recuadro inferior (caja roja de A). 

El círculo en el recuadro y la línea vertical a través del hielo denota la ubicación del pozo. La pista T1 está orientada 5–10 ° oblicua a la dirección de flujo de la glaciar y T2 aproximadamente 50 ° oblicuo al flujo; La capa de hielo alcanzó el fondo en punto del glaciar al final de T2. Triángulos en b y c marcando ubicaciones históricas de la GL,  ubicaciones estimadas a partir de interferometría satelital para 2011 (blanco) y la estimación en 2016 (azul). En b, el triángulo amarillo denota la cuña potencial de la GL detectada ver (Fig. 2). 

Más cercana a la GL, aunque Las temperaturas son más frías que el agua profunda, el agua del océano se mantiene más de grado por encima del punto de congelación. La base de hielo pasa de áspera cerca del GL a escalonada cerca y aguas abajo del pozo, lo que sugiere una fusión progresiva. Las grietas también contienen escalones, especialmente claros en c.

Estas variaciones ocurren a escalas mucho más pequeñas que aquellos resueltos por teledetección o capturados en modelos de toda la plataforma de hielo de las interacciones hielo-océano. Se han hecho pocas mediciones directas cerca de la base de hielo, y ninguna en el GL, lo que ayudaría a los modelos de gran y pequeña escala a representar mejor la fusión del hielo. Por lo tanto, sabe exactamente cómo se produce el derretimiento bajo las plataformas de hielo y particularmente en el GL, que influye en la pérdida de hielo, sigue sin resolverse en gran medida. 

Se llevó a cabo una campaña de perforación de la plataforma de hielo para acceder a la cavidad oceánica y a los sedimentos del fondo para observar el sistema cambiante directamente. El hielo en esta región está anclado a unos 500 m bajo el nivel del mar (Figs. 1 y 2), típico de la mayor parte del sistema Thwaites fuera del tronco occidental. Se desplegó un vehículo submarino llamado Icefin (datos extendidos Fig. 1) a través de un pozo el hielo. El vehículo midió la temperatura oceánica, la salinidad, oxígeno disuelto y velocidades de la corriente (Fig. 1 y Fig. 2), se mapeó el fondo del mar y la base de hielo y se tomaron imágenes del hielo y el fondo marino (Fig. 3).

Condiciones bajo la plataforma de hielo 

La base de hielo a la que se encuentra la línea de tierra (GL) se sitúa a  aproximadamente 500 m a 520 m bajo el nivel sobre la línea de estudio T1 de casi 3 km (Fig. 1b) y con una pendiente descendente más pronunciada a lo largo de la línea T2 desde un mínimo de 475 m profundidad en el GL (Fig. 1c). La temperatura, salinidad y el contenido de oxígeno disuelto en el agua, reflejan la mezcla de diferentes depósitos, incluyendo el océano, el agua del hielo glacial derretido (GMW) y agua subglacial (SGW) procedente de la fusión del hielo en tierra (es decir el hielo aguas arriba  de la GL). El agua templada ocupa gran parte del volumen oceánico bajo la plataforma de hielo, con temperaturas del océano 2,25 °C por encima del punto de congelación, disminuyendo solo ligeramente a 2 °C a unos 5 a 10 m de la base del hielo y a 400 m de la GL (Fig. 1b,c).

El oxígeno disuelto, refleja el intercambio del agua con la atmósfera antes de sumergirse debajo del hielo y el que se libera al derretirse el hielo, aumentó la concentración en esta región. Lo que indica una columna de agua relativamente bien mezclada cubierta por una capa superior estratificada, generalmente de 5 a 10 m de espesor, en la que el océano se enfrió, refrescó y aumentó en oxígeno debido al derretimiento del hielo local que produce una mayor mezcla de GMW.

El lecho marino en esta zona se caracteriza principalmente por crestas orientadas paralelamente al eje norte-sur correspondiente al flujo del glaciar (Fig. 2). El espacio cresta–cresta del fondo marino varía en un orden de magnitud de 3 a 25 m y su altura desde decenas de centímetros a 10 m de altura; la mayoría de las crestas tienen alturas de 0,5 a 2 m (Figuras 4–6). Son visibles cantos rodados esporádicos y piedras caídas a través del sedimento (Fig. 3). Los canales que atraviesan las crestas sugieren una reelaboración del sedimento, lo que podría ocurrir si el glaciar estuviera anclado cerca de este ugar que coincide con la posición estimada de GL en 2011 (Fig. 2a). Aguas arriba del pozo, una sola característica semilineal corta a través de las crestas de flujo a lo largo y crestas, con un pronunciado escalón en profundidad de 2-3 m de altura (Fig. 2b); 

 

Batimetría del fondo marino bajo el glaciar Thwaites

Figura 2 La batimetría del fondo marino muestra un retroceso suave e interacciones con el hielo cerca de la GL de la plataforma de hielo. La batimetría del fondo marino cerca de la GL se caracteriza por formas de lecho con surcos de flujo a lo largo con varias longitudes de onda, así como evidencia de dos posibles posiciones anteriores de la GL (recuadros blanco y rojo) y canales de salida del flujo subglaciar (recuadro negro). Los datos en a–d son del sonar batimétrico orientado hacia abajo y e del sonar frontal de la sonda submarina Icefin. Se observan sedimentos reelaborados (recuadro blanco) cerca del pozo (círculo amarillo). b, Una sola pendiente sinuosa de 2 a 3 m de altura consistente con una cuña de sedimento de un GL se encuentra a unos 200 m al norte de la GL de 2016 estimada a partir de distancia de detección (región encuadrada en rojo desde a; las flechas rojas indican la cuña). Esta cuña cruza las formas de lecho de flujo a lo largo de la longitud de onda de 2 a 5 m (Figs. 5 y 6 datos extendidos). 

c, Un canal aislado de 4 m de profundidad muestra dos giros y un segmento que corta perpendicular a la mayoría de las formas del lecho marino, lo que sugiere que esta característica se formó a partir del desvío del agua subglaciar cuando se retiró la GL (Datos extendidos Fig. 5). 

d, La topografía en forma de lecho cerca de la GL de T2 muestra evidencia de crestas lineales que apuntan al norte (Datos extendidos Fig. 4). 

e, Los datos del sonar prospectivo de la base de hielo cerca de la GL muestran que el hielo tiene las mismas crestas de longitud de onda de 2 a 5 m que las características de longitud de onda más corta en el fondo del mar Estos datos juntos sugieren que el retiro de la GL ha sido en gran parte continuo durante el período observable, desde al menos 2011 basado en datos remotos viendo las similitudes entre el lecho y la morfología del hielo en la GL sugiere que las interacciones del lecho de hielo establecen pendientes que luego son progresivamente derretidas por la intrusión del agua de mar. 


Esto es aguas abajo de todas las posiciones estimadas de la GL para 2016–2017 (ref. 12). esta característica se interpreta como una cuña de sedimento producida cuando el hielo estante fue puesto a tierra en esta posición, aproximadamente 1.250 m desde el final de la prospección T1 y 1.500 m de la ubicación más alejada de la GL 2017 aguas arriba. No se observa ninguna otra evidencia clara de cuñas de la GL en esta región. Por lo tanto, la batimetría sugiere que la GL se retiró suavemente por el fondo marino de forma progresiva, con una sola ubicación estable desde al menos 2011. Variaciones locales en la influencia de la pendiente basal (topografía) del derretimiento de la plataforma de hielo a través de la modulación de gradientes de densidad oceánica cerca del hielo (estratificación) y turbulencia a pequeña escala que controlan el calor del océano y fundentes salinos. Más cercano a la GL, la base de hielo comprende un sistema de crestas de longitud de onda corta que tienen una forma similar y unos 2 a 5 m de espaciamiento entre las crestas de pequeña amplitud (0,1–0,5 m) en el fondo del mar (Fig. 2b–d y Datos Extendidos Fig. 4) que se superponen sobre ondulaciones topográficas más amplias (alrededor de 50 m). Un kilómetro hacia aguas abajo de la GL, la superficie del hielo es muy rugosa, aproximadamente el 30% consiste en grandes fisuras. El hielo relativamente claro cargado de sedimento, llamado hielo basal, se encuentra constantemente en esta región y en parches aguas abajo abajo, interrumpiendo el hielo meteórico blanco rico en burbujas. Los escombros de grano fino (arena a lodo) (Fig. 3a, derecha) y clastos angulares intercalados que varían en tamaño desde unos pocos hasta decenas de centímetros comprende fuertes capas laminadas en el hielo basal en espaciamiento en escala centimétrica. Se observó un derretimiento visible en toda la región, con granos y pequeñas piedras caídas constantemente del hielo basal, agregando turbidez a la columna de agua. Aparecen pequeñas terrazas y morfología festoneada talladas en el hielo dentro de los 200 m de la GL, lo que indica que el derretimiento erosiona rápidamente estas caras inclinadas de hielo. Las paredes empinadas crecen en escala vertical con la distancia al la GL, que muestra la evolución progresiva de la forma del hielo derritiéndose cuanto más tiempo está expuesto al océano cálido. La base de hielo rugoso observada en el GL se erosiona aguas abajo, dando camino a terrazas de techo plano y empinadas (Figs. 1 y 3). Los muros de estas características forman ángulos de hasta 90° con sus techos planos y quillas, subiendo decenas de centímetros a más de 6 m de altura (Fig. 1b,c) y exhibiendo uniformemente texturas superficiales festoneadas (Fig. 3b, derecha), indicativo de fusión turbulenta impulsada por el océano. También se observan terrazas en grietas Por el contrario, el hielo aguas abajo bajo el TEIS es extremadamente plano, con pendientes superficiales menores a 5° (Figs. 1, 4 y 5). La topografía de la base de la plataforma de hielo tallada por derretimiento se ha observado en otros lugares, como quillas y canales, incluidas terrazas en el cercano glaciar Pine Island asociado con pendientes empinadas a lo largo de las características marginales y del canal que se argumentaba que se formaban por medio de la retroalimentación entre pendientes y derritiendo. 

Se observan terrazas distribuidas a lo largo del TEIS, en muchas diferentes orientaciones, las terrazas son características basales generalizadas de plataformas de hielo.

 

Morfología de la base del hielo, bajo el glaciar Thwaites
Figura 3  Las condiciones del océano influyen en la morfología de la base del hielo, que varía con distancia a la GL. La trayectoria del vehículo Icefin está sombreada por su recorrido relativo a lo largo de la trayectoria. Distancia  aguas abajo (blanco) a aguas arriba (negro). Los datos en azul claro indican regiones con enfriamiento en terrazas y azul oscuro denota datos más fríos/frescos observados. a, Las condiciones en la cavidad de agua cercana a GL muestran la influencia de la fusión cerca de la GL a lo largo de T2 (izquierda). Las estrellas de colores denotan pasos cercanos al hielo que también tienen distintas firmas de mezcla y derretemiento. Perfiles verticales de conducción térmica (Θ − Θf), salinidad absoluta (SA) y oxígeno disuelto (DO) combinado con la distancia desde la base del hielo muestran firmas  complejas que varían con la ubicación (Datos extendidos Fig. 3), lo que sugiere la influencia tanto de la fusión como del flujo de salida de SGW (centro). Imágenes cerca del GL (recuadro rojo) muestran la topografía del hielo estriado y el hielo basal claro cargado de sedimentos en la GL (estrella amarilla) (derecha). La barra de escala es de aproximadamente 0,5 m. b, Condiciones del océano en un gran terraza formada en la base de hielo implica derretimiento cerca de las paredes laterales (cajas rojas,  A 800 m de la GL por la T2) (izquierda). Se encuentra agua tibia y salada (negra, gris) a lo largo de las paredes laterales, mientras que el agua mucho más fría y oxigenada con baja conducción térmica (frío en relación con la congelación in situ) se acumula en el techo de la terraza (centro). Las imágenes de las paredes laterales de la terraza a lo largo del TEIS muestran uniformemente superficies que reflejan fusión turbulenta (Datos extendidos Fig. 8) (derecha). Barra de escala, aproximadamente 0,5 m. c, Como en b pero para una pequeña terraza a 2.400 m aguas abajo por la T1 que contiene agua fría y rica en oxígeno a lo largo de su techo. Aquí el agua se sobreenfría, con cristales de hielo. formándose lateralmente (derecha) a través de la interfaz altamente estratificada (recuadro rojo) entre esta capa límite superior de 0,1 m y la cálida, salina y más pobre en oxígeno aguas oceánicas inferiores. Barra de escala, aproximadamente 0,1 m.

Interacciones hielo-océano

Observaciones in situ de la capa límite hielo-océano no perturbada debajo de las plataformas de hielo son inherentemente difíciles de hacer a través de pozos debido a la contaminación del agua dulce calentada utilizada para perforar el orificio de acceso. 

En toda la región, la conducción térmica fue de aproximadamente 1,75 °C dentro de 1 m de la base de hielo, proporcionando suficiente calor para impulsar el derretimiento. En general, la columna de agua casi helada debajo del TEIS se ajusta estrechamente a la líneas de mezcla bien definidas entre GMW y una masa de agua de origen, implican una mezcla turbulenta completamente desarrollada (Datos extendidos Fig. 3), aunque los datos más cercanos al hielo reflejan un aumento de la fusión. Antes de este artículo, no existían mediciones in situ que podría limitar el comportamiento en el GL. Para hacer estas observaciones, se condujo el vehículo submarino a lo largo de la base del hielo para capturar la capa límite a lo largo de interfaces planas, en un ángulo hacia y luego en contacto con el hielo para medir gradientes hasta el hielo, y directamente en las paredes laterales verticales, en algunos casos midiendo dentro de unos 5 cm de la interfaz.


 

Topografía del hielo bajo el glaciar Thwaites.

Figura 4 Las corrientes oceánicas y la topografía del hielo contribuyen al derretimiento variable en terrazas y grietas. Aquí el recorrido del vehículo está sombreada por la distancia relativa a lo largo de la trayectoria desde aguas abajo (blanco) hasta aguas arriba (negro) y las velocidades de la corriente están sombreadas desde la más lenta (blanco) hasta la más rápida (púrpura). a, horizontales y tendencias verticales cerca de una esquina de una amplia terraza (1.900 m aguas abajo en T1 cerca el pozo) muestran el agua fria dentro de la terraza y la desaceleración de las corrientes a medida que el agua siente la influencia de la interfaz de hielo. Las líneas grises denotan la parte inferior de la terraza. Perfiles verticales de velocidad de las corrientes oceánicas (U), conducción térmica (Θ − Θf), salinidad absoluta (SA) y oxígeno disuelto (DO) agrupados con la distancia desde la base del hielo muestran que, aunque el agua está tibia cerca de la interfaz, la velocidad de la corriente disminuye en la capa límite, lo que sugiere rotura por fricción en la interfaz. b, c, como en a para la grieta más lejana del GL, observado a lo largo de T1 (b) y T2 (c). Los paneles de la derecha están agrupados con la distancia desde la parte superior de un escalón en la pared lateral de la grieta a lo largo de T1 marcada con la línea gris superior. La línea gris inferior indica la altura del fondo de la grieta en T1. Las estrellas en b se relacionan con la ubicación del panel a la izquierda. Estos paneles muestran agua templada con conducción térmica de casi 1,8 °C (Θ − Θf) alcanzando las paredes de la grieta acompañada de un muy ligero enfriamiento y aumento de oxígeno que indican fusión (SA y DO) que luego subiría a la grieta.

En toda la región, la conducción térmica fue de aproximadamente 1,75 °C dentro de 1 m de la base de hielo, proporcionando suficiente calor para impulsar el derretimiento.  En general, la columna de agua casi helada debajo del TEIS se ajusta estrechamente a la  líneas de mezcla bien definidas entre GMW y una masa de agua de origen, y observaciones implican una mezcla turbulenta completamente desarrollada (Métodos y Datos extendidos Fig. 3), aunque los datos más cercanos al hielo reflejan un aumento en la fusión. Las observaciones muestran una fuerte estratificación vertical acercándose 

 

Tasas de fusión bajo la plataforma del hielo del glaciar ThwaitesS.
Figura 5 Las tasas de fusión altamente variables se encuentran debajo del TEIS. a, b, estimaciones de la tasa de derretimiento de la plataforma de hielo que varía espacialmente se muestran para cada una de las cuatro subregiones a lo largo de T1 (a) y T2 (b) (r1–r4 son las mismas regiones que en la Tabla de datos extendida 2). La superficie del hielo está coloreada por la tasa de fusión calculada a lo largo de cada pendiente (paneles superiores) el bajo promedio regional condiciones del océano, lo que demuestra el aumento de la tasa de fusión a lo largo de pendientes pronunciadas. Las líneas de colores horizontales (paneles inferiores) corresponden a las tasas medias de fusión en cada región. Para las regiones r2 en T1 y r3 en T2, se presentan dos medias, como se observó que las condiciones cambiaban con la altura en las grietas, en las que el agua más alta en las grietas era más fría y fresca que el agua más baja en estas características. La barra inferior indica la tasa de fusión determinada por la fuerza variable oceánica en la grieta superior por encima de las líneas discontinuas en los paneles superiores; la barra superior representa la tasa de fusión media por debajo de la línea discontinua en el grietas las medias para cada una de estas regiones son las siguientes: T1: r1: 3,07 m por año; r2: 16,16 m por año (por debajo de los guiones), 9,72 m por año (por encima de los guiones); r3: 3,48 m por año; r4: 4,11 m por año; T2: r1: 1,47 m por año; r2: 4,18 m por año; r3: 9,12 m por año (debajo de los guiones), 6,82 m por año (arriba de los guiones); r4: 5,76 m por año. 


porciones planas de la interfaz hielo-océano que contienen GMW formadas a partir de fusión a lo largo de las laderas vecinas que ascienden hasta la base del hielo (Figs. 3 y 4). Las corrientes oceánicas se debilitan a menos de 5 m del hielo desde una velocidad de fondo cercana a 3 cm por segundo a casi cero cerca de la interfaz (Fig. 4a). Por el contrario, las corrientes aumentaron en las grietas hasta un máximo medido de 5,90 cm por segundo (Fig. 4b,c). En las terrazas, el oxígeno disuelto aumenta al disminuir la temperatura y salinidad, consistente con la aportación de la fusión del hielo. Una estratificación más fuerte fue observada en una terraza poco profunda formada a lo largo del techo de otra gran terraza, en la que la salinidad de la capa límite era de 20 g por kg, o aproximadamente un tercio más fría que la agua del océano circundante. Capas extremadamente frías con  (36–42 % de agua dulce) los huecos a lo largo de los techos de las terrazas no son completamente turbulentos, ya que la salinidad y el oxígeno disuelto exhibe firmas mucho más grandes que la temperatura, sugiriendo un régimen en el que los procesos de difusión controlan el calor y el flujo de sal. Los espesores de estas capas más frías son del orden de decenas de centímetros y probablemente reflejan la transición entre las porciones exteriores completamente turbulentas e interiores más viscosas en la capa límite hielo-océano.

El agua más cercana al GL es más fría y fresca que la circundante. Océano (excluyendo el agua dulce en los techos de las terrazas), con una firma de oxígeno disuelta distinta de otras partes de la región. Estos datos tienen una pendiente de temperatura-salinidad (T-S) más superficial de 2,05 °C (g kg−1)−1 que la línea de mezcla de fusión (aproximadamente 2,5 ° C (g kg-1)-1) y disminución del oxígeno disuelto con enfriamiento (Datos extendidos Fig. 3). Esta mezcla de agua fría pobre en oxígeno sugiere la presencia de SGW descargado aguas arriba de la GL. Aunque no se observa directamente ninguna fuente SGW, la batimetría cerca del GL a lo largo de T1 sugiere un canal subglaciar reciente (Fig. 2c), y el flujo de salida de SGW medido aguas abajo varía con el tiempo. Estimaciones de la concentración de SGW calculadas a partir de las propiedades T–S y DO–S indican valores máximos de 7 ml l−1 y 24 ml l−1, respectivamente. La estimación de SGW mucho más alta implícita en DO-S sugiere que el hielo basal cargado de escombros que prevalece cerca del GL también tiene poco oxígeno y se originó como SGW que se acrecentó en la más profunda cuenca aguas arriba (Datos extendidos Fig. 7). Para probar el impacto del derretimiento en la región, se calcularon las tasas de derretimiento suponiendo una mezcla turbulenta impulsada por cizalla, de acuerdo con la base del hielo local pendiente y usando las velocidades actuales y las condiciones hidrográficas que fueron promediado sobre regiones con condiciones similares (indicadas en la Fig. 5). Se compararon estos con otros resultados (Fig. 5). Este enfoque utilizando promedio regional  las condiciones del océano produce tasas de derretimiento ascendentes promedio de 5 m por año, pero el fundido en la región es muy variable (Figs. 5 y 6).

 

Tasa de derretimiento de la plataforma de hielo del glaciar Thwaites
Figura 6 La tasa de derretimiento de la plataforma de hielo depende en gran medida de la pendiente y las pendientes pronunciadas contribuyen hasta el 27% de la pérdida de hielo bajo el TEIS a lo largo de solo el 9% del hielo base. a, Las tasas de derretimiento de la plataforma de hielo espacialmente variables estimadas a lo largo de T1 y T2 muestran la fuerte influencia de la pendiente local. Aquí cada curva consta de puntos de datos de velocidad de fusión que se han calculado utilizando el promedio regional de las condiciones oceánicas  correspondientes a las regiones etiquetadas en la Fig. 5. Las curvas rojas son de T1 y las curvas azules son de T2. b, Fusión lateral a lo largo pendientes superiores a 30° contribuyen en un 27% estimado de la fusión bajo el TEIS, mientras que estas pendientes representan solo el 9% de la base de hielo. La fusión hacia arriba a lo largo de pendientes bajas sigue siendo la fuente más notable de fusión, en la que las pendientes de menos de 30° representan el 73% del derretimiento, mientras que representan el 91% del hielo.


La estratificación suprime la fusión a lo largo de interfaces planas, mientras que las tasas de fusión estimadas a lo largo de las caras verticales se acercan a los 30 m por año. 

Aunque la estratificación suprime la fusión hacia arriba (moderado vertical derretimiento o dilución), mayor mezcla turbulenta lateral y desestabilización el aumento de GMW permite que el agua caliente alcance superficies inclinadas y promueve la fusión (fundición lateral alta; Figs. 5 y 6). La superficies de hielo festoneadas observadas solo en caras empinadas es consistente con lados altos fusión (Fig. 3b y datos extendidos Fig. 8). La fusión es más fuerte a lo largo las paredes casi verticales de las grietas, en las que el agua está a 1,8 °C por encima del punto de congelación se observó que alcanzaba 1 m de la pared vertical de la grieta (Fig. 4b). 

El agua se enfría con altura en medio de las grietas, refresca y se vuelve más oxigenada, lo que sugiere una acumulación local de agua de deshielo superior a 3 ml por litro por la erosión de las paredes de las grietas. Corrientes fueron más rápidas en las grietas por hasta un factor de dos en comparación con la media de base, con velocidades de flujo que alcanzan unos 6 cm por segundo. Estas observaciones implican tasas de fusión a lo largo de las paredes laterales de la grieta de hasta 43 m por año en una grieta en la ubicación de estas observaciones, mientras que la fusión en otros lugares está más suprimida (Fig. 6).

Controles topográficos sobre la evolución de la plataforma de hielo indican que las interacciones hielo-océano bajo el TEIS son influenciadas incluso por la topografía del hielo a pequeña escala, que se extendería a otras plataformas de hielo de base cálida en las que corrientes bajas a moderadas las velocidades permiten que persistan altos niveles de estratificación oceánica cercana al hielo. Se calcula un derretimiento ascendente promedio moderado a lo largo de superficies planas en 5 m al año, que coincide con las tasas de fusión medidas en interfaces similares y son consistentes con las estimaciones históricas del radar de penetración de hielo. Más cercano al GL a lo largo de cada línea de estudio, las tasas de fusión promedian 2 m al año pero el rango de 1 a 10 m al año (Figs. 5 y 6). Las observaciones muestran que la retroalimentación entre la pendiente del hielo y el derretimiento es relevante para toda la base de plataformas de hielo, incluso cerca del GL. La variada topografía del hielo. La base en el GL, tallada a medida que fluía sobre el lecho antes de llegar al océano, se convierte en una red ampliamente distribuida de superficies de hielo inclinadas a lo largo de la cual se promueve la fusión. Estas observaciones sugieren que el derretimiento a lo largo del hielo inclinado es un factor importante en la pérdida total de hielo cerca del GL del glaciar Thwaites. En la región estudiada, el 27% del derretimiento total ocurre a lo largo de las laderas que son mayores de 30° (Fig. 6). Porque las grietas canalizan el agua a través ellas a velocidades que pueden transferir eficientemente el calor y la sal a las paredes empinadas de las grietas (Fig. 4), estas tasas de fusión localmente altas deberían ensanchar tanto grietas y fisuras basales a través del glaciar, incluyendo el TGT y el TEIS, y podrían contribuir al aumento del desprendimiento del glaciar. La topografía accidentada cerca de la GL puede permitir que persista la fusión en esta región a pesar de las bajas velocidades de la corriente. Este trabajo implica que la fusión basal de plataformas de hielo de base cálida es heterogénea y aprovecha la topografía del hielo heredado de interacciones con el lecho formado por grietas. Dichos efectos son difíciles de observar, aún no capturados en modelos de retroceso de la GL y probablemente contribuya a la pérdida de hielo en otros lugares a lo largo la costa antártica.

 

Salinidad y oxígeno disuelto bajo el glaciar Thwaites

Datos extendidos Fig. 2  La salinidad y el oxígeno disuelto generalmente van correlativos con la temperatura cerca de la GL en retirada del TEIS. 

a, Como en la Fig. 1, imagen de la TEIS, con posiciones históricas de GL en líneas de colores que muestran un retroceso notable en las últimas dos décadas, los recuadros rojos indican la región de estudio y la ubicación geográfica del TEIS en relación con la Antártida. 

b–g, Hidrografía del océano bajo el hielo muestra que la salinidad absoluta (d,e) y el oxígeno disuelto (f,g) y la temperatura (Fig. 1b, c) bajo el TEIS. El recuadro en b proporciona una vista ampliada de la región de estudio: el círculo amarillo indica la ubicación del orificio de acceso perforado con agua caliente, la línea roja representa T1 (5–10° oblicua a la dirección del flujo del glaciar) y la línea azul representa T2 (50° oblicua al flujo). Triángulos en b–g marcan las ubicaciones históricas de la GL estimadas a partir de datos satelitales (blanco, 2011; azul, 2016-2017) y mostrado por los datos del sonar batimétrico Icefin (amarillo).



Perfiles de salinidad, temperatura y oxígeno disuelto bajo el glaciar Thwaites

Datos extendidos Fig. 3 Perfiles de salinidad, temperatura y oxígeno disuelto muestran firmas de fusión y mezcla debajo del TEIS. T–S (a) y DO–S (b) Los diagramas comparan los datos hidrográficos de T1 y T2. Los datos se colorean después los datos mostrados en las Figs. 3 y 4 (con distancia a lo largo de la pista y para los cuales los colores azules denotan una sección extremadamente nueva) y las estrellas denotan ubicaciones colocadas fuera con estrellas en las Figs. 3 y 4. Los datos que muestran el agua más cálida, salada y pobre en oxígeno (en rojo) no se muestran en las Figs. 3 o 4 pero provienen de los datos más externos de los datos extendidos Fig. 2 a distancias superiores a 10 m desde la base del hielo. Este agua no interactúa con la base de hielo en la región estudiada. Las líneas gruesas muestran una mezcla lineal entre la masa de agua de origen responsable de derretir la base de hielo localmente (estrella roja) y una mezcla pura de GMW o SGW bajo unas condiciones de mezcla completamente turbulenta. Estos datos pueden no describir completamente los ambientes protegidos a lo largo cubiertas de terrazas, en las que pueden dominar los procesos difusivos.

 


Batimetría cerca de la línea del base del glaciar Thwaites

Datos extendidos Fig. 4  La batimetría cerca de la GL del TEIS a lo largo del  estudio T2 se caracteriza por formas de lecho rugosas de diferentes longitudes de onda. 

a, Batimetría derivada de sonar más cercano a la GL, coloreada por profundidad, que muestra ejemplos de crestas lineales (después de la batimetría de la Fig. 2). Las líneas blancas indican la posición de los perfiles. encontrados en c y d. b, El sonar con visión frontal muestra la topografía de la base de la plataforma de hielo topografía cerca de la GL (Fig. 2) se caracteriza por crestas similares, que tienen una distancia entre cumbre y valle de aproximadamente 2,5 m y caras inclinadas. 

c,d, Perfiles lineales de la topografía del lecho en toda la región muestran evidencia de crestas con aproximadamente 1 m, 2–2.5 m y longitudes de onda de 5 m. Estos datos muestran que la forma de la superficie del hielo en la GL se hereda del raspado sobre las formas del lecho y luego se modifica en gradas.



 

Batimetría bajo el glaciar Thwaites

Datos extendidos Fig. 5 Formas de lecho acanalado con crestas pronunciadas. Las amplitudes se encuentran a lo largo de T1. 

a, Batimetría derivada de sonar del pozo hasta el acercamiento más cercano hecho a la GL, coloreado por profundidad, Los recuadros  indican las secciones que se muestran en b y c. 

b,c, vistas en primer plano que muestran detalles de dos regiones de la exploración. Las líneas rojas (b) y blancas (c) indican el posición de los perfiles encontrados en d y e.

d,e, Perfiles lineales de la topografía del lecho mostrando que las crestas a pequeña escala se formaron a través de topografía de ondas más grandes y de longitud de onda más larga. 

f,g, más cercana a la GL, longitud de onda de 1 m, 5 m y 10 m a lo largo del flujo se observan crestas.

 

Topografía del fondo marino bajo el glaciar Thwaites

Datos extendidos Fig. 6 La topografía del fondo marino sugiere dinámicas pasadas influyendo en la retirada del glaciar Thwaites. 

a, batimetría derivada de sonar  desde el pozo hasta el acercamiento más cercano hecho a la GL, coloreada por profundidad, con leyendas para los paneles b y c.

 b,c, Vistas de primer plano que muestran detalles de dos regiones de la exploración. Las líneas rojas y blancas indican la posición de perfiles encontrados en d-g. 

d,e, Perfiles lineales de un corte transversal muestran una cresta sinuosa de aproximadamente 3 m de altura consistente con un evento de puesta a tierra anterior que permite aumento de la deposición de sedimentos en este área. Esta es la única característica de este tipo en los datos de la exploración. 

f,g, perfiles lineales a través de un posible antiguo canal subglaciar cerca de la GL. En f, una depresión en forma de U de 5 m de profundidad en el sedimento comienza paralela a flujo de hielo pero luego corta perpendicularmente al flujo de hielo a través de las características del lecho lineal y luego gira bruscamente, lo que podría ser consistente con un canal inciso por salida subglaciar en el sedimento. En g, la extensión aguas arriba del canal es menos notable, lo que sugiere una modificación como el hielo sin conexión a tierra o que el SGW no fue enrutado discretamente a través de este área.


Elevación del lecho y velocidad del hielo en el glaciar Thwaites

Datos ampliados Fig. 7  La elevación del lecho y la velocidad del hielo para el TEIS muestran un sistema cambiante susceptible de retroceso de GL.

 a, elevación del lecho coloreado para el TEIS se superpone en una imagen con las posiciones históricas de GL; el cuadrado rojo indica la región de estudio. Debe tenerse en cuenta que las regiones aguas arriba de la presente GL están enterradas a más de 800 m bajo el nivel del mar. 

b, Como en a pero coloreada por las velocidades medias del flujo de hielo hacia el mar en 2019 para esta región. Tener en cuenta que las velocidades de flujo aumentan a medida que el hielo cruza  la GL y disminuye cerca del punto de fijación.

 


Topografía de las terrazas de hielo bajo el glaciar Thwaites

Datos ampliados Fig. 8 La topografía de las terrazas de hielo bajo el TEIS demuestran procesos de fusión fuertemente asimétricos. 

a–d, Imágenes de una terraza aguas arriba del pozo a lo largo de T1 muestran una pared lateral empinada y curva (a), techo plano (b), transición pronunciada de la pared a la base plana (c) y primer plano de oquedades redondeadas en la pared muestran diferencias entre los modos de fusión hacia arriba a lo largo del techo y base con fusión turbulenta lateral a lo largo de la pared lateral. Vistas hacia arriba de la base (e) y pared lateral (f) otra terraza aguas abajo del pozo muestra características similares. Pequeñas terrazas cerca dela  GL a lo largo de la T1 muestran la iniciación de oquedades a lo largo de rasgos más pequeños en el hielo basal (g), en el que el hielo asimétrico la fusión es clara por la forma y las corrientes de partículas (h,i).