Monte Perdido

Monte Perdido

sábado, 16 de noviembre de 2024

DANA 2.0 y Bulos

Últimamente, se habla mucho de Bulos o (Fake News) y de desinformación pero se pone el foco en las redes sociales, cuando muchas veces la mayor fuente de bulos son los poderes establecidos que permiten y fomentan la economía a cualquier precio, aunque sea de vidas humanas. La fotografía de portada es una muestra clarísima de bulo aunque ellos lo llaman marketing. NO debería permitirse construir en zonas inundables y mucho menos hacer "marketing" engañando a la gente. La (Penúltima) DANA del pasado Octubre puso de manifiesto claramente donde están los bulos, y como muestra, la foto de abajo.

Imagina tu casa en esta zona "Fake Márketing"
            "Imagina tu casa en esta zona (inundable)"
  A la constructora se le "vio el plumero". foto de BIEL ALIÑO (EFE)

Cómo en todas las grandes catástrofes confluyeron varios factores. Uno de ellos lo acabamos de ver; Construir en zonas inundables, y el otro y más evidentemente  fue la inusitada fuerza de la DANA y la enorme cantidad de agua que cayó.

Para los otros grandes generadores de bulos, los negacionistas del cambio climático, tengo dos cosas más que comentar: la primera es la lista de las mayores DANAS de los últimos 70 años como contrapartida a su machacón argumento: "DANAS ha habido siempre". Si, es cierto, DANAS ha habido siempre, pero ¿de esta envergadura?¿con estas cantidades de precipitación?. Veamos los datos:

Las mayores DANAS de España, por cantidad de lluvia, muertos y daños materiales:

Riada de Valencia (14 octubre 1957)

Precipitación: Más de 300 mm en zonas puntuales.

Fallecidos: 81.

Daños materiales: Inundaciones masivas en la ciudad de Valencia.


 Riada del Vallés Occidental (25 septiembre 1962)

Precipitación:  212 mm en menos de tres horas.

Fallecidos: Varios centenares.

Daños materiales: Enorme destrucción en Cataluña, incluyendo puentes y viviendas.


DANA del Albuñol  y Puerto Lumbreras(18 y 19 octubre 1973)

Precipitación: Hasta 600 mm (estimación).

Fallecidos: 134.

Daños materiales: Gran devastación en Murcia y Andalucía.


Pantanada de Tous (20 octubre 1982)

Precipitación:  600 mm en un área de 700 km² aguas arriba del pantano

Fallecidos: Más de 30.

Daños materiales: Arrasó múltiples localidades.

Otra cosa a tener en cuenta; muchos dicen que las consecuencias catastróficas de esta DANA (de Octubre de 2024) se hubieran evitado construyendo presas, pero ojo con esto, porque las cantidades caídas fueron suficientes para llevarse una hipotética presa por delante, igual que sucedió en este caso, y Tous no fue un caso aislado, tenemos un caso muy reciente y muy catastrófico: los miles de muertos en la ciudad Libia de Derna por la destrucción de dos presas como consecuencia de la tormenta Daniel.


DANA en Bilbao (26 agosto  1983)

Precipitación: entre 400 y 200 mm según zonas.

Fallecidos: 34 y 5 desaparecidos.

Daños materiales: Fueron las inundaciones más costosas de España hasta las de octubre de 2024.


Riada de Biescas (7 agosto 1996)

Precipitación: 250 mm.

Fallecidos: 87, muchos en un camping afectado por un torrente.

Daños materiales: Destrucción severa en la zona de Aragón.


DANA de Vega Baja (12,14 septiembre 2019)

El temporal más grave registrado en Alicante y Murcia en 140 años

Precipitación: Más de 500 mm en 24 horas.

Fallecidos: 7.

Daños materiales: 2.300 millones de euros, especialmente en Murcia y Alicante.


DANA en Valencia (29 octubre 2024)

Precipitación: 500 mm en 6 horas.

Fallecidos: Más de 200.

Daños materiales: Aún en evaluación, pero significativos.

DANA de Octubre de 2024 en Valencia
¿El problema son las cañas? Otro bulo:
 las cañas obstruyeron el paso del agua. foto de 
BIEL ALIÑO (EFE)

Como se puede ver, las tres en las que hay mayor registro de precipitación  son precisamente las dos últimas, junto con la pantanada  de Tous de 1982,  con lo que la tendencia es que cada vez se producen mayores precipitaciones debido a un mayor calentamiento del mediterráneo.

Y La segunda prueba que quería comentar, viene de nuevo al hilo de las construcciones humanas, pero esta vez en sentido inverso. Si bien muchos venimos denunciando que se construye en zonas inundables. También es cierto y bastante notorio que una de las construcciones humanas que menos se inundan son las construcciones históricas, precisamente porque al ser las primeras, aprovecharon los mejores terrenos y los menos expuestos a catástrofes como inundaciones, de ellas, las iglesias son un claro ejemplo de construcciones históricas en terrenos libres de inundaciones.

El hecho de que se inunden iglesias y construcciones históricas es bastante significativo sobre lo excepcional de una inundación y da una idea bastante acertada de lo extraordinario de las últimas DANAS.

DANAs ha habido siempre, pero normalmente no han inundado iglesias por lo que acabo de comentar más arriba.

Pongo aquí una lista de iglesias (históricas) inundadas en las dos últimas DANAS:

29 Octubre 2024 Iglesia de la Victoria de Jerez de la Frontera.  Siglo XVI

Iglesia de Chiva. Siglo XVIII

13 Noviembre 2024

Iglesia del Carmen Perchel Málaga. Siglo XVII

Iglesia de la encarnación de Benamargosa. Siglo XVI

Vecinos colaboran con las labores de limpieza de la Iglesia de la Encarnación en Benamargosa
Vecinos colaboran con las labores de limpieza de la Iglesia de la Encarnación en Benamargosa. Jorge Zapata (EFE).


En cuanto al título de este post, DANA 2.0, la razón principal ya la apunté aquí: 

"Igual que se está hablando de habilitar una nueva categoría 6 para los huracanes. O incluso ya se habla de incendios de sexta generación. Es posible que esta haya sido la primera DANA 2.0 que hemos vivido."

Y el motivo una vez más, solo puede ser una mayor de cantidad de agua precipitable en la atmósfera debido a la anormalmente caliente temperatura del mar Mediterráneo debido al cambio climático.

Ya tenemos un estudio de atribución al cambio climático de esta DANA 

Aunque aún es demasiado preliminar, podemos resumir que: 

No es posible estimar de forma fiable cuán inusuales fueron las lluvias intensas en la región más afectada, un paso común en los análisis de atribución. Se sugiere que se trató de un evento con una probabilidad de ocurrencia de 1 en 20 años en cuanto a precipitaciones diarias sobre una gran región del este de España

De Los tres conjuntos de datos analizados que indican eventos de lluvias intensas en un solo día, como el observado, se observa que actualmente son aproximadamente un 12% más intensos y aproximadamente el doble de probables en el clima actual, que es 1,3 °C más cálido que en el clima preindustrial sin calentamiento causado por humanos.

Las inundaciones repentinas suelen estar impulsadas por lluvias extremas en escalas temporales más cortas, de solo unas pocas horas. Los estudios han demostrado que la intensidad de estos eventos subdiarios han mostrado aumentos más fuertes impulsados por el cambio climático, globalmente alrededor del 20% 

En los últimos 75 años, los extremos de precipitación diaria durante la temporada de septiembre a diciembre en el centro y sureste de España han aumentado significativamente con el calentamiento global, duplicándose aproximadamente en probabilidad y aumentando en intensidad un 12%. Aunque una atribución completa requeriría evaluar las tendencias en modelos climáticos además de observaciones, los resultados coinciden con otros estudios sobre extremos de lluvia en la región.

Mapa geológico del IGME 722 Valencia
Mapa geológico del IGME Nº 722 escala 1:50.000 año 1972 comparado con ortofoto actual, Se puede apreciar la enorme zona ocupada por los mantos de arrollada y la Albufera, y lo poco construido que estaba en 1972 comparado con la foto actual.



domingo, 3 de noviembre de 2024

El antes y el después en Valencia.

 

Valencia antes de la inundación

Valencia después de la inundación


Fuente: ESA

El cambio climático es real.

El cambio climático ya está aquí, no es algo que vaya a suceder en el futuro.

Este verano se batió el récord de temperatura del agua del mar frente a las costas de Valencia 28,15 ºC.

DANAS ha habido siempre, 28,15 ºC No.

Calentamiento no significa solo más calor.

Más calor no significa tiempo más agradable.

A los que llevamos décadas advirtiendo del cambio climático, se nos llama catastrofistas.

Esta DANA empezó a gestarse en el verano de 2022, si solo han bastado tres años para que se produzca, y si consideramos que la DANA se ha producido al rebasar aproximadamente el 50% de probabilidad, podemos esperar un periodo de retorno medio en torno  a seis años. Lo que no quiere decir que vaya a caer en el mismo sitio. La siguiente DANA catastrófica podría caer en cualquier sitio de la geografía española, pero si seguimos padeciendo veranos como los de 2022, 2023 y 2024 es muy posible que sólo tengamos que esperar seis años para que se produzca de nuevo. 

Igual que se está hablando de habilitar una nueva categoría 6 para los huracanes. O incluso ya se habla de incendios de sexta generación. Es posible que esta haya sido la primera DANA 2.0 que hemos vivido. 

DANA 24-10-2024

Está era la previsión del 24-10-2024, como se puede ver podría haber sido muchísimo peor. Y si los modelos ya lo "ven" es que está ya dentro de lo posible. 

Ahora ya pueden llamarme catastrofista. 





sábado, 2 de noviembre de 2024

¿Está la circulación de vuelco meridional (AMOC) del Atlántico acercándose a un punto de inflexión?

Resumen

La Circulación de Vuelco Meridional del Atlántico (AMOC) tiene un gran impacto en el clima, no solo en el Atlántico Norte, sino a nivel global. Los datos paleoclimáticos muestran que ha sido inestable en el pasado, conduciendo a algunos de los cambios climáticos más dramáticos y abruptos conocidos. Estas inestabilidades se deben a dos tipos diferentes de puntos de inflexión, uno vinculado a retroalimentaciones amplificadoras en el transporte de sal a gran escala y el otro en la mezcla convectiva que impulsa el flujo. Estos puntos de inflexión presentan un gran riesgo de cambios abruptos en la circulación oceánica y el clima a medida que llevamos a nuestro planeta más allá del clima estable del Holoceno hacia terreno desconocido.

Antecedentes

En 1751, el capitán de un barco inglés dedicado al comercio de esclavos hizo un descubrimiento histórico. Mientras navegaba a 25°N en el Atlántico Norte subtropical, el Capitán Henry Ellis bajó un "medidor de mar de cubo", ideado y proporcionado por el clérigo británico Reverendo Stephen Hales, a través de las cálidas aguas superficiales hasta las profundidades. Mediante una cuerda larga y un sistema de válvulas, se podía subir agua de diversas profundidades a la cubierta, donde su temperatura se leía de un termómetro incorporado. Para su sorpresa, el Capitán Ellis descubrió que el agua profunda estaba muy fria.

Informó sus hallazgos al Reverendo Hales en una carta: "El frío aumentaba regularmente, en proporción a las profundidades, hasta descender a 1188 metros: desde donde el mercurio en el termómetro bajó a 11,7 grados Celsius; y aunque después lo hundí a la profundidad de 1629 metros, no bajó más."

Estas fueron las primeras mediciones de temperatura del océano profundo registradas. Revelaron lo que ahora se sabe que es una característica física fundamental e impresionante del océano mundial: el agua profunda siempre está fría. Las aguas cálidas de los trópicos y subtrópicos están confinadas a una capa delgada en la superficie; el calor del sol no calienta lentamente las profundidades durante siglos o milenios como podría esperarse.

La carta de Ellis a Hales sugiere que no tenía idea del significado de gran alcance de su descubrimiento. Escribió: "Este experimento, que al principio parecía mera curiosidad, se volvió muy útil para nosotros. Mediante él, suministramos nuestro baño frío y enfriamos nuestros vinos o agua a placer; lo cual es enormemente agradable para nosotros en este clima ardiente".

De hecho, Ellis había descubierto la primera indicación de la circulación de vuelco del océano, el sistema de corrientes oceánicas profundas que circula aguas frías de origen polar alrededor del planeta.

Pero no fue hasta varias décadas después, en 1797, que otro inglés, el Conde Rumford, publicó una explicación correcta para el "útil" descubrimiento de Ellis: "Parece extremadamente difícil, si no del todo imposible, explicar este grado de frío en el fondo del mar en la zona tórrida, bajo cualquier otra suposición que no sea la de corrientes frías desde los polos; y la utilidad de estas corrientes para templar los calores excesivos de estos climas es demasiado evidente para requerir ilustración".

Ahora, más de 200 años después, tenemos una comprensión razonable del complejo sistema de circulación oceánica profunda y, lo que Rumford encontró tan evidente, el papel que juega en el clima. Sin embargo, algunos enigmas importantes permanece que pueden ser de fundamental importancia para nuestro futuro.

Cincuenta veces el uso de energía humana

Se llama AMOC (por sus siglas en inglés: Circulación de Vuelco Meridional del Atlántico, [Atlantic Meridional Overtuning Circulation]). Su flujo hacia el norte de aguas superficiales cálidas y el flujo de retorno profundo y frío hacia el Atlántico Sur, una curiosidad: transporta calor desde las latitudes altas del sur hacia el ecuador, de frío a cálido (Figura 1).

 

CIRCULACIÓN DE VUELCO MERIDIONAL DEL ATLÁNTICO

FIGURA 1. Este gráfico muestra un esquema altamente simplificado de la Circulación Meridional de Vuelco del Atlántico (AMOC) con un fondo de la tendencia de la temperatura de la superficie del mar desde 1993, proporcionada por el Servicio de Cambio Climático de Copernicus

Todos los demás océanos se comportan "normalmente", moviendo el exceso de calor lejos de los trópicos bañados por el sol.

En el Atlántico Norte, la circulación de vuelco mueve calor a una tasa de un petavatio (10^15 vatios), aproximadamente 50 veces el uso de energía de toda la humanidad, o 3,5 veces la tasa de absorción de calor del océano global del calor vertido en las últimas décadas debido al calentamiento global causado por el hombre. Libera el calor en la región al sur de Groenlandia e Islandia, e  incluso más al norte, hacia los mares nórdicos más allá de Islandia. Allí, entrega generosamente su calor a los vientos fríos hasta que el agua está tan fría y densa que se hunde en el abismo, a una profundidad entre 2000 y 3000 m. Allí "fluye como un gran río, a lo largo de todo el Atlántico". El calor liberado a la atmósfera hace que la región del Atlántico Norte sea mucho más cálida de lo que corresponde a su latitud, particularmente en la dirección del viento del océano (Figura 2). También es la razón principal por la que el hemisferio norte es en promedio ~1.4°C más cálido que el hemisferio sur, y por qué el ecuador térmico, la latitud donde la Tierra es más caliente, está a ~10° al norte del ecuador geográfico.

 

Este mapa muestra cómo sería el mundo sin la Circulación Meridional de Vuelco del Atlántico (AMOC)

FIGURA 2 (arriba). Este mapa muestra cómo sería el mundo sin la Circulación Meridional de Vuelco del Atlántico (AMOC). Casi todo el hemisferio norte sería más frío, especialmente Islandia, Escandinavia y Gran Bretaña. 

La temperatura no es el único ingrediente clave de la AMOC; el segundo factor es la salinidad: cuanto más salada es el agua, más densa es. Por lo tanto, la salinidad es un factor importante para el hundimiento descrito anteriormente. Así, esta circulación de vuelco también se llama circulación termohalina, es decir, una circulación impulsada por diferencias de temperatura y salinidad, en contraste con la circulación impulsada por el viento y las corrientes de marea. Mientras que la temperatura tiene una influencia estabilizadora en la AMOC, la salinidad tiene el poder de desestabilizaría.

 

Diagrama de estabilidad de la AMOC

FIGURA 3. (a) Diagrama de estabilidad de la AMOC en el modelo de cajas de Stommel, en función de la cantidad de agua dulce que ingresa al Atlántico norte. Las líneas verdes continuas muestran estados de equilibrio estables, la línea verde discontinua uno inestable. La curva azul muestra un camino que abandona las líneas de equilibrio durante un cambio climático rápido. (b) Aquí, la línea naranja traza los equilibrios de la AMOC en un modelo tridimensional de circulación oceánica global. La línea negra es el mismo experimento de trazado realizado con el modelo de cajas. Las líneas superiores naranja y negra se trazan de izquierda a derecha comenzando con la AMOC "encendida", las inferiores de derecha a izquierda comenzando con la AMOC "apagada". 

Una historia de dos inestabilidades

En 1961, el oceanógrafo estadounidense Henry Stommel reconoció cómo la salinidad de las aguas atlánticas lleva a un punto de inflexión de la AMOC, un fenómeno que volvió a ser noticia el año pasado y este año. El agua se hunde en el Atlántico norte porque es lo suficientemente salada (a diferencia del Pacífico Norte). El agua es salada porque la AMOC lleva agua salada de los subtrópicos, una región de evaporación neta, a las latitudes más altas, una región de precipitación neta. En otras palabras, la AMOC fluye porque el Atlántico norte es salado, y es salado porque la AMOC fluye. Es un caso de "el huevo y la gallina", o en términos más técnicos, un efecto de retroalimentación auto-sostenido.

Esto funciona también al revés: si el Atlántico norte se vuelve menos salado debido a una entrada de agua dulce (lluvia o agua de deshielo), el agua se vuelve menos densa y la AMOC se desacelera. Así, trae menos sal a la región, lo que desacelera aún más la AMOC. Este proceso se llama retroalimentación del transporte de sal. Más allá de un umbral crítico, se convierte en un círculo vicioso auto-amplificante, y la AMOC se detiene. Ese umbral es el punto de inflexión de la AMOC (llamado Bifurcación de Stommel en la Figura 3). Como escribió Stommel en 1961: "El sistema está inherentemente lleno de posibilidades para especular sobre el cambio climático."

El modelo de Stommel consistía solo en una caja en una latitud alta y una caja subtropical que estaban conectadas por un flujo de reversión proporcional a la diferencia de densidad entre ellas. El modelo predecía este flujo, la temperatura, salinidad y densidad en ambas cajas. La Figura 3 muestra la fuerza de la AMOC en equilibrio según lo calculado por el modelo de cajas de Stommel, y el punto de inflexión que encontró.

Para modelos de cajas como el de Stommel, las curvas de equilibrio pueden calcularse analíticamente; la solución para la curva verde es simplemente una parábola. Para rastrear los estados de equilibrio de un modelo complejo, se añade agua dulce al Atlántico norte a una tasa muy lenta en aumento (por ejemplo, subiendo 0.1 Sv en 2000 años; 1 Sv = 10^6 m³/s) para permanecer cerca del equilibrio y ver dónde comienzan a dominar el debilitamiento o las retroalimentaciones, lo que sucede más allá del punto de inflexión. Un equipo de investigación desarrolló métodos para calcular directamente los estados de equilibrio en modelos tridimensionales del océano, pero no funciona en modelos complejos acoplados océano-atmósfera, por lo que es necesario aplicar el enfoque de trazado de añadir agua dulce lentamente.

En el régimen monestable (a la izquierda del forzamiento de agua dulce cero en la Figura 3), un colapso de la AMOC aún puede ser forzado por una gran adición temporal de agua dulce, pero la AMOC se recuperará después de que el forzamiento termine. En el régimen biestable, el sistema puede estar permanentemente en uno de dos estados estables, con la AMOC "encendida" o "apagada", dependiendo de las condiciones iniciales. Así, el flujo de la AMOC terminado por un forzamiento temporal no se recuperará sino que permanecerá en el estado estable "apagado". Los experimentos con tal adición temporal de agua dulce muestran que muchos, si no la mayoría, de los modelos climáticos están en el régimen monestable y, por lo tanto, comparativamente lejos del punto de inflexión. Esto no implica que no tengan este punto de inflexión o que no tengan un régimen biestable; solo muestra que no están en él para el clima actual (probablemente de manera incorrecta, ver la sección "¿Se puede confiar en los modelos climáticos?" más abajo).

El cambio climático puede alejar la AMOC de la línea de equilibrio, siguiendo algo parecido al camino azul en la Figura 3a, porque el calentamiento global moderno avanza demasiado rápido para que el océano se ajuste completamente. Después de cruzar la línea discontinua, la AMOC será atraída hacia el estado "apagado" incluso sin más empujes. Cabe destacar que la AMOC es aún más vulnerable a forzamientos más rápidos. Eso significa que los experimentos de trazado de equilibrio muy lento mostrados en la Figura 3b subestiman cuán cerca está el punto de inflexión de la AMOC en una situación de cambio climático rápido, como en la que estamos hoy en día.

Que este punto de inflexión y el régimen biestable son reales, y no solo un artefacto del modelo simple de Stommel, ha sido confirmado en numerosos modelos de todo el espectro de modelos desde el artículo de Stommel de 1961, incluidos modelos sofisticados de circulación oceánica tridimensional, modelos del sistema terrestre de complejidad intermedia y modelos climáticos acoplados completamente desarrollados, por ejemplo, el Modelo del Sistema Terrestre Comunitario (CESM).

La comparación se encontró el régimen biestable en los 11 modelos participantes, y no existe conocimiento de ningún modelo que haya sido probado y no tenga esta propiedad. Aunque este tipo de experimento no puede realizarse con modelos que simulan explícitamente remolinos de mesoescala en el océano, no se espera que haya una diferencia significativa, dado que la retroalimentación relevante de advección de sal opera a una escala muy grande.

Un segundo tipo de punto de inflexión también puede afectar la AMOC. Una parte importante del proceso de hundimiento en el Atlántico norte (llamado "formación de agua profunda") es la mezcla vertical profunda (convección) cuando la columna de agua se vuelve verticalmente inestable, debido a que el agua más densa se sitúa sobre el agua menos densa. La convección también podría apagarse como un interruptor, nuevamente debido al efecto desestabilizador de la salinidad. En las regiones de alta latitud, el océano típicamente gana agua dulce de la lluvia en la superficie, por lo que una vez que la convección se detiene durante suficiente tiempo, el agua dulce puede acumularse y formar una capa superficial de baja densidad. Esto hace que sea cada vez más difícil reiniciar la convección, y en algún momento, se apaga permanentemente. Se puede ver que esto funciona incluso si la convección es intermitente en presencia de variabilidad climática aleatoria.

Hay dos regiones principales de convección dentro de la AMOC actual: una en la región del giro subpolar del Atlántico norte (incluyendo los mares de Labrador e Irminger) y otra más al norte en los mares nórdicos. En muchos experimentos de modelos, la convección del Mar de Labrador ha sido propensa a apagarse, ralentizando no solo la AMOC sino también el giro subpolar, un enorme flujo de rotación en sentido antihorario al sur de Groenlandia e Islandia (Figura 4). Una vez que la convección (que normalmente extrae el calor de la columna de agua por mezcla de agua más caliente hasta la superficie, donde el calor se pierde a la atmósfera) ha sido limitado de esta manera, menos calor se pierde a través de la superficie del mar, y toda la columna de agua se vuelve menos densa. Esto ralentiza la AMOC, que después de todo es impulsada por las aguas frías y de alta densidad que empujan hacia el sur desde las altas latitudes. Por lo tanto, un cierre de la convección puede ayudar a desencadenar un cierre de la AMOC. Y debido a que la convección es un proceso a pequeña escala, no se captura bien en la mayoría de los modelos actuales, añadiendo una capa de incertidumbre sobre el futuro.

AMOC flujos superficiales actuales

FIGURA 4. Se muestran los flujos superficiales actuales (líneas continuas) y los flujos profundos (líneas discontinuas) para el Atlántico norte y los mares nórdicos. 

Cambios drásticos de la AMOC en el pasado

Basándonos en este entendimiento de los mecanismos de inestabilidad de la AMOC, podemos examinar algunos cambios climáticos dramáticos que han ocurrido en el pasado reciente—"reciente," es decir, desde una perspectiva del paleoclima, en los últimos 100.000 años.

En 1987, Wally Broecker publicó un artículo ahora famoso en la revista Nature titulado "¿Sorpresas desagradables en el invernadero?". En él, discutía datos de núcleos de sedimentos profundos del mar y agujeros perforados en la capa de hielo de Groenlandia, señalando que estos datos revelan que "el clima cambió frecuentemente y en grandes saltos" en lugar de manera suave y gradual. Dados los patrones regionales de estos cambios, identificó a la AMOC (en ese momento conocida como la "cinta transportadora del Atlántico") como la culpable. Advirtió que al liberar gases de efecto invernadero, "jugamos a la ruleta rusa con el clima [y] nadie sabe qué hay en la recámara activa del arma."

En las décadas desde entonces, hemos llegado a distinguir dos tipos de eventos climáticos abruptos que ocurrieron repetidamente durante la última Edad de Hielo, centrados alrededor del Atlántico norte pero con repercusiones globales.

El primer tipo son los eventos Dansgaard-Oeschger (DO), nombrados en honor al investigador danés de núcleos de hielo Willy Dansgaard y su colega suizo Hans Oeschger. Más de 20 eventos se muestran prominentemente como picos de calentamiento abrupto de 10°–15°C en una o dos décadas en los datos de núcleos de hielo de Groenlandia. Se pueden explicar como arranques súbitos de la convección oceánica en los mares nórdicos cuando la convección de la Edad de Hielo ocurría mayormente solo en el Atlántico abierto al sur de Islandia (Figura 5). La configuración de la circulación oceánica cálida que alcanzó el extremo norte aparentemente no era estable bajo las condiciones de la Edad de Hielo: se debilitó gradualmente, hasta que después de algunos cientos de años, la convección y el evento cálido terminaron nuevamente. Es, por lo tanto, un ejemplo de un cambio convectivo de encendido-apagado como se ha visto anteriormente, con la convección de los mares nórdicos encendiéndose y apagándose.

El segundo tipo son los eventos Heinrich, nombrados en honor al científico alemán Hartmut Heinrich. Involucran enormes masas de hielo que episódicamente se deslizaron hacia el mar desde la capa de hielo Laurentida de varios miles de metros de espesor que cubría América del Norte en ese momento. Estos icebergs derivaron a través del Atlántico, dejando capas distintivas de detritos arrastrados por el hielo en el fondo del océano y añadiendo agua de deshielo fresca a la superficie del océano. Esto llevó a cambios climáticos aún más dramáticos, vinculados a un colapso completo de la AMOC. Tanto hielo entró en el océano que los niveles del mar aumentaron varios metros. La evidencia de que esta cantidad de agua dulce ingresando al Atlántico norte cerró la AMOC se encuentra en el hecho de que la Antártida se calentó mientras que el hemisferio norte se enfrió, lo que indica que el enorme transporte de calor de la AMOC desde el extremo sur a través del ecuador hasta el extremo norte esencialmente se detuvo.

Tanto los eventos Dansgaard-Oeschger como los eventos Heinrich, aunque más fuertes alrededor del Atlántico norte, tuvieron grandes repercusiones climáticas globales incluso lejos del Atlántico, ya que afectaron las bandas de lluvia tropicales que resultan del movimiento ascendente de aire cálido sobre el "ecuador térmico." Durante los eventos cálidos de Dansgaard-Oeschger, estas bandas de lluvia se desplazaron hacia el norte, llevando a condiciones cálidas y húmedas en los trópicos del norte hasta Asia. Pero durante los eventos Heinrich, las bandas de lluvia se desplazaron hacia el sur, llevando a sequías catastróficas en la región del monzón afro-asiático. ¿Podrían cambios similares en las bandas de lluvia tropicales estar en nuestro futuro?

 

La AMOC durante la última Edad de Hielo

FIGURA 5. La AMOC durante la última Edad de Hielo. (a) El estado frío (stadial) prevalente. (b) El estado más cálido (interestadial) durante los eventos Dansgaard-Oeschger, mostrando el cambio de temperatura. La resolución muy gruesa de ese modelo subestima el efecto de calentamiento de los eventos Dansgaard-Oeschger.

sábado, 5 de octubre de 2024

Una señal de alerta temprana muestra que la AMOC está en curso de superar un punto de inflexión

Esto es una traducción resumida del artículo original

Uno de los puntos de inflexión climática más destacados es la circulación meridional de vuelco del Atlántico (AMOC), (uno de cuyos brazos es la conocida como corriente del Golfo) Que potencialmente puede colapsar debido a la entrada de agua dulce en el Atlántico Norte. Aunque el colapso de la AMOC ha sido inducido en modelos climáticos globales complejos con un fuerte forzamiento de agua dulce, los procesos de este colapso de la AMOC hasta el momento han sido  investigados. Aquí se muestran los resultados del primer estudio sobre este punto de inflexión.

Se incluye un modelo del sistema terrestre, incluidos los grandes impactos climáticos que produciría su colapso. Usando estos resultados, se ha desarrollado un sistema basado en la física como señal de alerta temprana observable de la AMOC. Es decir un valor físico medible  mínimo que nos servirá como señal de alerta temprana para advertirnos sobre el inminente colapso de la AMOC. Los últimos reanálisis indican que la situación actual de la AMOC está en curso hacia el colapso. 

Introducción 

La circulación meridional de inversión del Atlántico (AMOC) efectivamente transporta calor y sal a través del océano global y modula fuertemente el clima regional y global. Mediciones de sección continua de la AMOC, están disponibles desde 2004 sobre en 26°N han demostrado que la fuerza de la AMOC ha disminuido en unos pocos Sverdrups desde 2004 hasta 2012 y posteriormente se ha vuelto a fortalecer (1 Sv = 106 m3/s) [es decir un millón de metros cúbicos por segundo o cinco veces el caudal de amazonas en su desembocadura]. Una escala de tiempo más larga sobre la variabilidad de la fuerza de AMOC, estimada utilizando series temporales de la temperatura de la superficie del mar (SST), indica que la AMOC se ha debilitado en 3 ± 1 Sv desde aproximadamente 1950. A partir de estos registros, se ha sugerido que la AMOC está actualmente en su estado más débil en más de un milenio. La AMOC ha sido etiquetada como uno de los puntos de inflexión en el sistema climático, lo que indica que podría sufrir un cambio relativamente rápido bajo un forzamiento que se desarrolle lentamente. La AMOC es particularmente sensible al forzamiento de entrada de agua dulce en el océano, ya sea a través del flujo de agua de superficie (por ejemplo precipitación) o por entrada de agua dulce debido a escorrentía de ríos o derretimiento del hielo (por ejemplo, de la capa de hielo de Groenlandia). A pesar de ello, no se ha encontrado ningún colapso de la AMOC en observaciones históricas, pero si hay buena evidencia de registros proxy de que se han producido cambios abruptos en la AMOC en el pasado geológico reciente durante los llamados eventos Dansgaard-Oeschger  

Los indicadores de alerta temprana, sugieren que la AMOC actualmente se acerca a un punto de inflexión antes del final de este siglo. Aunque existe una gran necesidad de un enfoque más amplio, basado en observaciones  físicas, como indicadores de alerta temprana confiables que caractericen un punto de inflexión más robusto para la AMOC. 

Colapso de la AMOC

Para desarrollar un indicador de advertencia temprana, se realizó una simulación específica para encontrar un evento de punto de inflexión en la Circulación Meridional de Vuelco del Atlántico (AMOC, por sus siglas en inglés) en el descontinuado Modelo del Sistema Terrestre Comunitario (CESM; versión 1.0.5). Esta versión del CESM, que se utilizó en el Proyecto de Intercomparación de Modelos Acoplados (CMIP),  tenía resoluciones horizontales de 1° para los componentes de océano/hielo marino y de 2° para los componentes de atmósfera/tierra. Se comenzó a partir de una solución de equilibrio estadístico de una simulación de control preindustrial y se mantuvieron constantes los forzamientos de gases de efecto invernadero, solar y de aerosoles a niveles preindustriales durante la simulación. Se siguió un enfoque de cuasi-equilibrio  añadiendo una anomalía de flujo de agua dulce lentamente variable FH en el Atlántico Norte sobre la región entre las latitudes 20°N y 50°N. Esta anomalía de flujo de agua dulce se compensa en el resto del dominio, como se muestra en el recuadro de la Fig. 1A. Se aumentó linealmente el forzamiento del flujo de agua dulce con una tasa de 3 × 10−4 Sv por año hasta el año 2200, donde se alcanza un máximo de FH = 0.66 Sv. Tal simulación no se había realizado antes con un modelo climático global complejo (GCM). 

Bajo un forzamiento de agua dulce creciente, se encontró una disminución gradual (Fig. 1A) en la fuerza de la AMOC. La variabilidad natural domina la fuerza de la AMOC en los primeros 400 años; sin embargo, después del año 800, aparece una clara tendencia negativa debido al creciente forzamiento de agua dulce. Luego, después de 1750 años de simulación del modelo, se observó un colapso abrupto de la AMOC. La fuerza de la AMOC bajó aproximadamente de 10 Sv en el año 1750 del modelo (¡Ojo! no confundir con 1750 de nuestra era)  hasta los 2 Sv 100 años después (año del modelo 1850) y eventualmente se vuelve ligeramente negativa después del año 2000 del modelo. Tal respuesta transitoria de la AMOC (años del modelo 1750 a 1850) es espectacular considerando el lento cambio en el forzamiento de agua dulce (es decir, ΔFH = 0.03 Sv). La característica de la circulación de vuelco meridional y el transporte de calor asociado hacia el norte en el Océano Atlántico cayeron casi a cero y en un 75% (a 26°N), respectivamente, después del año modelo 2000 (Fig. 1, B a D). Este resultado difiere sustancialmente de las simulaciones anteriores con GCMs que habían utilizado forzamientos de agua dulce extremadamente grandes [por ejemplo, 1 Sv por año sobre 50°N a 70°N] o una gran perturbación de la  salinidad inicial.

Los cambios en la AMOC son impulsados principalmente por el forzamiento de agua dulce, e inducidos principalmente por retroalimentaciones internas. Además, basándonos en la variación de la AMOC (aquí aproximadamente 8 Sv), está claro que aparece un evento de punto de inflexión de la AMOC en la simulación del CESM,  que es el primero encontrado en un GCM complejo.

Un bajo un forzamiento de agua dulce que varía lentamente de 5 × 10⁻⁴ Sv por año. Los valores encontrados indican, que tanto el forzamiento de agua dulce como las retroalimentaciones internas son importantes para inducir cambios en la AMOC. Estas diferencias entre los dos diferentes estados de la AMOC (promedios de los años del modelo 2151 a 2200) se presentan en la fig. S1. La figura S3A muestra un enfriamiento de la SST (temperaturas de la superficie del mar) del Hemisferio Norte cuando la AMOC colapsa, con diferencias de SST de hasta 10°C cerca de Europa occidental. Por el contrario, la SST en el Hemisferio Sur aumenta debido al colapso, resultando en un patrón distintivo de balancín entre los hemisferios. 

 

AMOC está en curso de superar un punto de inflexión

Fig. 1. Colapso de la AMOC. (A) La fuerza de la AMOC a 1000 m y 26°N, donde el sombreado rosado indica los rangos observados. Las líneas de color cian indican la magnitud de FH. La flecha roja indica el punto de inflexión de la AMOC (año modelo 1758), y las secciones azules indican los períodos de 50 años utilizados en (B) a (D). Recuadro: El experimento de hosing donde se añade agua dulce a la superficie del océano entre 20°N y 50°N en el Océano Atlántico (+FH) y se compensa sobre la superficie oceánica restante (−FH). Las secciones negras indican las latitudes 26°N y 34°S sobre las cuales se determinan la fuerza de la AMOC y el transporte de agua dulce (FovS), respectivamente. (B a D) Función de corriente de la AMOC (Ψ) y transporte de calor meridional del Atlántico (MHT) para los años modelo 1 a 50, 1701 a 1750 y 2151 a 2200. Los contornos indican las isolíneas de Ψ para diferentes valores.

¿Qué es FovS?

Es un término que se refiere al transporte de salinidad por la Circulación Meridional de Retorno del Atlántico (AMOC) en la latitud de 34°S. Es una medida del flujo neto de salinidad que la AMOC transporta en esa latitud específica del Atlántico.

En contextos de estudios climáticos, la FovS se utiliza para entender cómo los cambios en la salinidad y el flujo de agua dulce afectan la estabilidad y el comportamiento de la AMOC. Un valor negativo de la FovS indica que hay un transporte neto de salinidad hacia el sur (fuera del Atlántico), mientras que un valor positivo indica un transporte neto hacia el norte (dentro del Atlántico).


Este patrón surge de la reducción en el intercambio del transporte de calor meridional entre los hemisferios.  Las salinidades en los primeros 100 metros de profundidad del Atlántico Norte también están fuertemente influenciadas bajo el colapso de la AMOC (fig. S1B). Cabe señalar que las salinidades fuera del Atlántico han aumentado en parte debido a la compensación del flujo de agua dulce utilizada en la configuración del experimento de cuasi-equilibrio. A partir de los cambios en la profundidad máxima anual de la capa de mezcla (fig. S1C), se puede deducir que la convección profunda cesa en el Atlántico Norte (alrededor de Groenlandia), lo cual está en concordancia con el estado invertido de la AMOC (Fig. 1D). Otras regiones, como el Océano Austral, muestran un aumento en la profundidad de la capa de mezcla. El debilitamiento de la AMOC resulta, mediante el balance geostrófico, https://es.wikipedia.org/wiki/Corriente_geostr%C3%B3fica en un aumento dinámico del nivel del mar en el Océano Atlántico (fig. S1D) y algunas regiones costeras experimentan un aumento dinámico del nivel del mar de más de 70 cm.

Impactos climáticos de los cambios en la SST 

Debido al colapso de la AMOC también afecta a la atmósfera y a la distribución global del hielo marino. Las respuestas atmosféricas (fig. S2) consisten en un patrón de balancín en la temperatura superficial a 2 metros, un desplazamiento hacia el sur de la zona de convergencia intertropical (ITCZ)  y el fortalecimiento de la célula de Hadley en el Hemisferio Norte. El gradiente de temperatura meridional es más fuerte sobre el Hemisferio Norte, esto amplifica la corriente en chorro subtropical, mientras que en el Hemisferio Sur ocurre lo contrario. Durante el debilitamiento gradual de la AMOC en los primeros 1400 años del modelo, no hubo tendencias significativas en la temperatura superficial media global o en el área global de hielo marino. Un vez se produce el colapso de la AMOC, el hielo marino ártico (marzo) se extiende hasta 50°N y hay un retroceso gradual del hielo marino antártico (septiembre) (fig. S3). La vasta expansión del hielo marino del Hemisferio Norte amplifica aún más el enfriamiento a través de la retroalimentación hielo-albedo. Estos hallazgos son cualitativamente similares para un fuerte debilitamiento de la AMOC a 3 a 4 Sv.

Las respuestas del océano, la atmósfera y el hielo marino mencionadas anteriormente influyen fuertemente en los climas regionales de todo el mundo (Fig. 2). El clima europeo se hace significativamente diferente después del colapso de la AMOC, mientras que para otras regiones solo ciertos meses experimentan cambios significativos. La selva amazónica también muestra un cambio drástico en sus patrones de precipitación debido a los desplazamientos de la ITCZ, y la estación seca se convierte en la estación húmeda y viceversa. Estos cambios en la precipitación inducidos por la AMOC podrían perturbar gravemente el ecosistema de la selva amazónica y potencialmente conducir a puntos de inflexión en cascada. El Hemisferio Norte muestra temperaturas más frías después del colapso de la AMOC, mientras que sucede lo contrario en el Hemisferio Sur.

El clima europeo se ve muy afectado (Fig. 3A) bajo el colapso de la AMOC. Cabe señalar que los cambios correspondientes ocurren dentro de un período relativamente corto (años modelo 1750 a 1850) y bajo un cambio muy pequeño en el forzamiento superficial de agua dulce. La tendencia anual promedio de la temperatura superficial atmosférica excede 1°C por década en una amplia región del noroeste de Europa, y para varias ciudades europeas, se encuentra que las temperaturas disminuyen entre 5° y 15°C (Fig. 3C). Las tendencias son aún más notables al considerar meses específicos (Fig. 3B). Por ejemplo, las temperaturas de febrero para Bergen (Noruega) disminuirán en aproximadamente 3.5°C por década (Fig. 3D). Estas tendencias de temperatura relativamente fuertes están asociadas con la retroalimentación hielo-albedo a través de la vasta expansión del hielo marino ártico (fig. S5A).

Indicador de advertencia temprana basado en la física 

A partir de modelos climáticos idealizados del océano, se ha sugerido que el transporte de agua dulce de la AMOC a 34°S, indicado por FovS, es un indicador importante de la estabilidad de la AMOC. La razón es que esta cantidad es una medida de la fuerza de la retroalimentación de advección de sal, que se considera crucial en el punto de inflexión de la AMOC.

Colapso AMOC, Climogramas para diferentes regiones.

Fig. 2. Climogramas para diferentes regiones. Seis regiones diferentes (promedio espacial sobre cajas de 10° × 10°), donde las barras indican la precipitación mensual y las curvas indican las temperaturas mensuales. El climograma se determina para los años modelo 1 a 50 (barras y curvas rojas) y los años modelo 2151 a 2200 (barras y curvas azules). Nótese los diferentes rangos verticales para cada climograma. Las letras P y t en las barras indican diferencias mensuales significativas (P < 0.05, prueba t de Welch bilateral. para precipitación y temperatura, respectivamente.

 

Respuesta de la temperatura superficial durante el colapso de la AMOC

Fig. 3. Respuesta de la temperatura superficial durante el colapso de la AMOC. (A) Tendencia de la temperatura superficial a 2 metros promediada anualmente (años del modelo 1750 a 1850). Los marcadores indican tendencias no significativas [P > 0.05, prueba t]. (B) Similar a (A) pero ahora para la tendencia de la temperatura superficial a 2 metros en febrero. Los puntos rojos indican cinco ciudades diferentes utilizadas en (C) y (D). Nota las diferentes escalas de la barra de colores entre (A) y (B). (C) Diferencia de temperatura (con respecto al año del modelo 1600) para cinco ciudades diferentes, incluyendo la fuerza de la AMOC. Las tendencias se determinan durante los años del modelo 1750 a 1850 (sombreado amarillo) durante los cuales la fuerza de la AMOC disminuye considerablemente. (D) Tendencias mensuales de temperatura para las cinco ciudades diferentes.

Puntos clave

Como resultado de esta simulación detallada se han observado algunos puntos clave adicionales, estos serían:

El derretimiento de hielo de Groenlandia añade más agua dulce al océano y puede debilitar la AMOC.

La AMOC transporta agua salada hacia el norte. Si se debilita, transporta menos sal, lo cual aumenta la perturbación inicial de agua dulce.

El modelo CESM muestra que inicialmente la AMOC exporta sal fuera del Atlántico, lo que no concuerda con las observaciones reales.

Este sesgo ha sido observado en diferentes fases de modelos climáticos: CMIP3, CMIP5 y CMIP6.

En los modelos CMIP6, el sesgo se debe a grandes discrepancias en el flujo de agua dulce sobre el Océano Índico comparado con observaciones reales.

El Atlántico es una cuenca con evaporación neta, donde se evapora más agua de la que entra.

Para equilibrar el presupuesto de agua dulce del Atlántico, se necesita un mayor transporte de sal hacia  el interior de la zona estudiada o de agua dulce hacia el exterior.

La convergencia de agua dulce en el Atlántico no compensa completamente los cambios en el flujo superficial de agua dulce, resultando en almacenamiento de agua dulce en el Atlántico, especialmente por debajo de los 1000 metros de profundidad.

Los cambios en el FovS son impulsados principalmente por cambios en la salinidad y luego por cambios en la circulación oceánica a 60°N.

FovS juega un papel crucial en el equilibrio del presupuesto de agua dulce del Atlántico bajo el forzamiento de las entradas de agua dulce.

Antes del colapso de la AMOC, los cambios en la salinidad son más significativos que los cambios en la velocidad de la corriente.

Después del colapso de la AMOC, la disminución en la velocidad reduce la magnitud de la FovS.

Eventualmente, cuando las salinidades se ajustan al nuevo estado colapsado, FovS vuelve a ser positivo.

FovS alcanza un mínimo justo antes del colapso de la AMOC. Este mínimo ocurre en el año 1732 de la simulación, mientras que el colapso de la AMOC ocurre alrededor del año 1758.

La variabilidad de FovS aumenta al acercarse al colapso de la AMOC, lo que indica una pérdida de estabilidad.

Modelos climáticos sugieren que el mínimo de FovS precede al colapso de la AMOC.

Indicadores de Advertencia Temprana:

Los indicadores clásicos indicadores de advertencia (varianza y autocorrelación) no muestran un aumento consistente antes del colapso.

Un aumento en la varianza de FovS se considera una señal de advertencia temprana prometedora para un colapso de la AMOC.

El punto de inflexión de la AMOC se puede estimar extrapolando la tendencia de FovS.

Análisis de datos muestran una tendencia negativa en la FovS, sugiriendo que la AMOC está cerca de un punto de inflexión.

Evidencia Paleoclimática y Modelos Idealizados:

Los cambios rápidos en la AMOC durante eventos históricos apoyan la teoría del punto de inflexión. Coinciden con un enfriamiento rápido y significativo del hemisferio norte.

Conclusión:

Los cambios observados en FovS y AMOC en estas simulaciones están dentro del rango de los modelos CMIP6 actuales, lo que refuerza la validez de estos resultados.

En resumen, el mínimo de la FovS precede al colapso de la AMOC, también es importante evaluar los cambios en salinidad y la velocidad de la corriente. La FovS se ha revelado útil como indicador de advertencia temprana previa al colapso de la AMOC. También son necesarias observaciones futuras y ajustes en los modelos climáticos para mejorar las predicciones y atajar las discrepancias observadas entre la realidad y los modelos.

El estudio sugiere que estamos acercándonos al colapso, indicando que nos encontramos en una fase avanzada de la simulación. Si consideramos que el colapso es inminente y ocurrirá antes de finales de este siglo (2100), podemos interpretar que:

Si estamos en una fase avanzada de la simulación, podríamos estar alrededor del año 1700-1750 del modelo, donde los efectos del forzamiento de agua dulce comienzan a dominar y empujan hacia el colapso.

Respuesta oceánica colapso AMOC

Figura S1: Respuesta oceánica. (a): Las diferencias de la temperatura de la superficie del mar entre los dos estados de la AMOC (años del modelo 2.151 – 2.200 menos 1 – 50), los marcadores indican diferencias no significativas (p ≥ 0.05, prueba t de Welch). (b – d): Similar al panel a, pero ahora para (b): salinidad promediada verticalmente (0 – 100 m), (c): profundidad máxima anual de la capa de mezcla y (d): nivel del mar dinámico.

 

Respuesta atmosférica colapso AMOC

Figura S2: Respuesta atmosférica. (a): Las diferencias de la temperatura superficial a 2 metros entre los dos estados de la AMOC (años del modelo 2.151 – 2.200 menos 1 – 50), los marcadores indican diferencias no significativas (p ≥ 0.05, prueba t de Welch). Las curvas rojas (azules) muestran valores positivos (negativos) de las diferencias de presión a nivel del mar con magnitudes de (-)1 hPa y (-)2 hPa para las curvas discontinuas y continuas, respectivamente. (b – f): Similar al panel a, pero ahora para (b): función de densidad de probabilidad de la ubicación de la ITCZ, (c): altura geopotencial de 850 hPa (sombreado) y velocidades horizontales de 850 hPa (vectores), (d): precipitación.

 

Respuesta del hielo marino Colapso AMOC

Figura S3: Respuesta del hielo marino. (a): La fracción de hielo marino en el Ártico para marzo durante los años del modelo 2.151 – 2.200. La curva azul oscura muestra el borde del hielo marino en el Ártico (es decir, la isolínea de fracción de hielo marino del 15%) para marzo durante los años del modelo 1 – 50. (b): Similar al panel a, pero ahora para las fracciones de hielo marino en la Antártida para septiembre. (c): El área de hielo marino en el hemisferio norte para marzo y septiembre, incluyendo la temperatura superficial a 2 metros para la media global y del hemisferio norte. El área de hielo marino se basa en todas las celdas de la cuadrícula con fracciones de hielo marino superiores al 15%. Las series temporales de temperatura superficial a 2 metros se muestran como promedios de 5 años (para reducir la variabilidad de las series temporales). (d): Similar al panel c, pero ahora para el área de hielo marino en el hemisferio sur y la temperatura superficial a 2 metros del hemisferio sur.