Monte Perdido

Monte Perdido
Mostrando entradas con la etiqueta AMOC. Mostrar todas las entradas
Mostrando entradas con la etiqueta AMOC. Mostrar todas las entradas

sábado, 2 de noviembre de 2024

¿Está la circulación de vuelco meridional (AMOC) del Atlántico acercándose a un punto de inflexión?

Resumen

La Circulación de Vuelco Meridional del Atlántico (AMOC) tiene un gran impacto en el clima, no solo en el Atlántico Norte, sino a nivel global. Los datos paleoclimáticos muestran que ha sido inestable en el pasado, conduciendo a algunos de los cambios climáticos más dramáticos y abruptos conocidos. Estas inestabilidades se deben a dos tipos diferentes de puntos de inflexión, uno vinculado a retroalimentaciones amplificadoras en el transporte de sal a gran escala y el otro en la mezcla convectiva que impulsa el flujo. Estos puntos de inflexión presentan un gran riesgo de cambios abruptos en la circulación oceánica y el clima a medida que llevamos a nuestro planeta más allá del clima estable del Holoceno hacia terreno desconocido.

Antecedentes

En 1751, el capitán de un barco inglés dedicado al comercio de esclavos hizo un descubrimiento histórico. Mientras navegaba a 25°N en el Atlántico Norte subtropical, el Capitán Henry Ellis bajó un "medidor de mar de cubo", ideado y proporcionado por el clérigo británico Reverendo Stephen Hales, a través de las cálidas aguas superficiales hasta las profundidades. Mediante una cuerda larga y un sistema de válvulas, se podía subir agua de diversas profundidades a la cubierta, donde su temperatura se leía de un termómetro incorporado. Para su sorpresa, el Capitán Ellis descubrió que el agua profunda estaba muy fria.

Informó sus hallazgos al Reverendo Hales en una carta: "El frío aumentaba regularmente, en proporción a las profundidades, hasta descender a 1188 metros: desde donde el mercurio en el termómetro bajó a 11,7 grados Celsius; y aunque después lo hundí a la profundidad de 1629 metros, no bajó más."

Estas fueron las primeras mediciones de temperatura del océano profundo registradas. Revelaron lo que ahora se sabe que es una característica física fundamental e impresionante del océano mundial: el agua profunda siempre está fría. Las aguas cálidas de los trópicos y subtrópicos están confinadas a una capa delgada en la superficie; el calor del sol no calienta lentamente las profundidades durante siglos o milenios como podría esperarse.

La carta de Ellis a Hales sugiere que no tenía idea del significado de gran alcance de su descubrimiento. Escribió: "Este experimento, que al principio parecía mera curiosidad, se volvió muy útil para nosotros. Mediante él, suministramos nuestro baño frío y enfriamos nuestros vinos o agua a placer; lo cual es enormemente agradable para nosotros en este clima ardiente".

De hecho, Ellis había descubierto la primera indicación de la circulación de vuelco del océano, el sistema de corrientes oceánicas profundas que circula aguas frías de origen polar alrededor del planeta.

Pero no fue hasta varias décadas después, en 1797, que otro inglés, el Conde Rumford, publicó una explicación correcta para el "útil" descubrimiento de Ellis: "Parece extremadamente difícil, si no del todo imposible, explicar este grado de frío en el fondo del mar en la zona tórrida, bajo cualquier otra suposición que no sea la de corrientes frías desde los polos; y la utilidad de estas corrientes para templar los calores excesivos de estos climas es demasiado evidente para requerir ilustración".

Ahora, más de 200 años después, tenemos una comprensión razonable del complejo sistema de circulación oceánica profunda y, lo que Rumford encontró tan evidente, el papel que juega en el clima. Sin embargo, algunos enigmas importantes permanece que pueden ser de fundamental importancia para nuestro futuro.

Cincuenta veces el uso de energía humana

Se llama AMOC (por sus siglas en inglés: Circulación de Vuelco Meridional del Atlántico, [Atlantic Meridional Overtuning Circulation]). Su flujo hacia el norte de aguas superficiales cálidas y el flujo de retorno profundo y frío hacia el Atlántico Sur, una curiosidad: transporta calor desde las latitudes altas del sur hacia el ecuador, de frío a cálido (Figura 1).

 

CIRCULACIÓN DE VUELCO MERIDIONAL DEL ATLÁNTICO

FIGURA 1. Este gráfico muestra un esquema altamente simplificado de la Circulación Meridional de Vuelco del Atlántico (AMOC) con un fondo de la tendencia de la temperatura de la superficie del mar desde 1993, proporcionada por el Servicio de Cambio Climático de Copernicus

Todos los demás océanos se comportan "normalmente", moviendo el exceso de calor lejos de los trópicos bañados por el sol.

En el Atlántico Norte, la circulación de vuelco mueve calor a una tasa de un petavatio (10^15 vatios), aproximadamente 50 veces el uso de energía de toda la humanidad, o 3,5 veces la tasa de absorción de calor del océano global del calor vertido en las últimas décadas debido al calentamiento global causado por el hombre. Libera el calor en la región al sur de Groenlandia e Islandia, e  incluso más al norte, hacia los mares nórdicos más allá de Islandia. Allí, entrega generosamente su calor a los vientos fríos hasta que el agua está tan fría y densa que se hunde en el abismo, a una profundidad entre 2000 y 3000 m. Allí "fluye como un gran río, a lo largo de todo el Atlántico". El calor liberado a la atmósfera hace que la región del Atlántico Norte sea mucho más cálida de lo que corresponde a su latitud, particularmente en la dirección del viento del océano (Figura 2). También es la razón principal por la que el hemisferio norte es en promedio ~1.4°C más cálido que el hemisferio sur, y por qué el ecuador térmico, la latitud donde la Tierra es más caliente, está a ~10° al norte del ecuador geográfico.

 

Este mapa muestra cómo sería el mundo sin la Circulación Meridional de Vuelco del Atlántico (AMOC)

FIGURA 2 (arriba). Este mapa muestra cómo sería el mundo sin la Circulación Meridional de Vuelco del Atlántico (AMOC). Casi todo el hemisferio norte sería más frío, especialmente Islandia, Escandinavia y Gran Bretaña. 

La temperatura no es el único ingrediente clave de la AMOC; el segundo factor es la salinidad: cuanto más salada es el agua, más densa es. Por lo tanto, la salinidad es un factor importante para el hundimiento descrito anteriormente. Así, esta circulación de vuelco también se llama circulación termohalina, es decir, una circulación impulsada por diferencias de temperatura y salinidad, en contraste con la circulación impulsada por el viento y las corrientes de marea. Mientras que la temperatura tiene una influencia estabilizadora en la AMOC, la salinidad tiene el poder de desestabilizaría.

 

Diagrama de estabilidad de la AMOC

FIGURA 3. (a) Diagrama de estabilidad de la AMOC en el modelo de cajas de Stommel, en función de la cantidad de agua dulce que ingresa al Atlántico norte. Las líneas verdes continuas muestran estados de equilibrio estables, la línea verde discontinua uno inestable. La curva azul muestra un camino que abandona las líneas de equilibrio durante un cambio climático rápido. (b) Aquí, la línea naranja traza los equilibrios de la AMOC en un modelo tridimensional de circulación oceánica global. La línea negra es el mismo experimento de trazado realizado con el modelo de cajas. Las líneas superiores naranja y negra se trazan de izquierda a derecha comenzando con la AMOC "encendida", las inferiores de derecha a izquierda comenzando con la AMOC "apagada". 

Una historia de dos inestabilidades

En 1961, el oceanógrafo estadounidense Henry Stommel reconoció cómo la salinidad de las aguas atlánticas lleva a un punto de inflexión de la AMOC, un fenómeno que volvió a ser noticia el año pasado y este año. El agua se hunde en el Atlántico norte porque es lo suficientemente salada (a diferencia del Pacífico Norte). El agua es salada porque la AMOC lleva agua salada de los subtrópicos, una región de evaporación neta, a las latitudes más altas, una región de precipitación neta. En otras palabras, la AMOC fluye porque el Atlántico norte es salado, y es salado porque la AMOC fluye. Es un caso de "el huevo y la gallina", o en términos más técnicos, un efecto de retroalimentación auto-sostenido.

Esto funciona también al revés: si el Atlántico norte se vuelve menos salado debido a una entrada de agua dulce (lluvia o agua de deshielo), el agua se vuelve menos densa y la AMOC se desacelera. Así, trae menos sal a la región, lo que desacelera aún más la AMOC. Este proceso se llama retroalimentación del transporte de sal. Más allá de un umbral crítico, se convierte en un círculo vicioso auto-amplificante, y la AMOC se detiene. Ese umbral es el punto de inflexión de la AMOC (llamado Bifurcación de Stommel en la Figura 3). Como escribió Stommel en 1961: "El sistema está inherentemente lleno de posibilidades para especular sobre el cambio climático."

El modelo de Stommel consistía solo en una caja en una latitud alta y una caja subtropical que estaban conectadas por un flujo de reversión proporcional a la diferencia de densidad entre ellas. El modelo predecía este flujo, la temperatura, salinidad y densidad en ambas cajas. La Figura 3 muestra la fuerza de la AMOC en equilibrio según lo calculado por el modelo de cajas de Stommel, y el punto de inflexión que encontró.

Para modelos de cajas como el de Stommel, las curvas de equilibrio pueden calcularse analíticamente; la solución para la curva verde es simplemente una parábola. Para rastrear los estados de equilibrio de un modelo complejo, se añade agua dulce al Atlántico norte a una tasa muy lenta en aumento (por ejemplo, subiendo 0.1 Sv en 2000 años; 1 Sv = 10^6 m³/s) para permanecer cerca del equilibrio y ver dónde comienzan a dominar el debilitamiento o las retroalimentaciones, lo que sucede más allá del punto de inflexión. Un equipo de investigación desarrolló métodos para calcular directamente los estados de equilibrio en modelos tridimensionales del océano, pero no funciona en modelos complejos acoplados océano-atmósfera, por lo que es necesario aplicar el enfoque de trazado de añadir agua dulce lentamente.

En el régimen monestable (a la izquierda del forzamiento de agua dulce cero en la Figura 3), un colapso de la AMOC aún puede ser forzado por una gran adición temporal de agua dulce, pero la AMOC se recuperará después de que el forzamiento termine. En el régimen biestable, el sistema puede estar permanentemente en uno de dos estados estables, con la AMOC "encendida" o "apagada", dependiendo de las condiciones iniciales. Así, el flujo de la AMOC terminado por un forzamiento temporal no se recuperará sino que permanecerá en el estado estable "apagado". Los experimentos con tal adición temporal de agua dulce muestran que muchos, si no la mayoría, de los modelos climáticos están en el régimen monestable y, por lo tanto, comparativamente lejos del punto de inflexión. Esto no implica que no tengan este punto de inflexión o que no tengan un régimen biestable; solo muestra que no están en él para el clima actual (probablemente de manera incorrecta, ver la sección "¿Se puede confiar en los modelos climáticos?" más abajo).

El cambio climático puede alejar la AMOC de la línea de equilibrio, siguiendo algo parecido al camino azul en la Figura 3a, porque el calentamiento global moderno avanza demasiado rápido para que el océano se ajuste completamente. Después de cruzar la línea discontinua, la AMOC será atraída hacia el estado "apagado" incluso sin más empujes. Cabe destacar que la AMOC es aún más vulnerable a forzamientos más rápidos. Eso significa que los experimentos de trazado de equilibrio muy lento mostrados en la Figura 3b subestiman cuán cerca está el punto de inflexión de la AMOC en una situación de cambio climático rápido, como en la que estamos hoy en día.

Que este punto de inflexión y el régimen biestable son reales, y no solo un artefacto del modelo simple de Stommel, ha sido confirmado en numerosos modelos de todo el espectro de modelos desde el artículo de Stommel de 1961, incluidos modelos sofisticados de circulación oceánica tridimensional, modelos del sistema terrestre de complejidad intermedia y modelos climáticos acoplados completamente desarrollados, por ejemplo, el Modelo del Sistema Terrestre Comunitario (CESM).

La comparación se encontró el régimen biestable en los 11 modelos participantes, y no existe conocimiento de ningún modelo que haya sido probado y no tenga esta propiedad. Aunque este tipo de experimento no puede realizarse con modelos que simulan explícitamente remolinos de mesoescala en el océano, no se espera que haya una diferencia significativa, dado que la retroalimentación relevante de advección de sal opera a una escala muy grande.

Un segundo tipo de punto de inflexión también puede afectar la AMOC. Una parte importante del proceso de hundimiento en el Atlántico norte (llamado "formación de agua profunda") es la mezcla vertical profunda (convección) cuando la columna de agua se vuelve verticalmente inestable, debido a que el agua más densa se sitúa sobre el agua menos densa. La convección también podría apagarse como un interruptor, nuevamente debido al efecto desestabilizador de la salinidad. En las regiones de alta latitud, el océano típicamente gana agua dulce de la lluvia en la superficie, por lo que una vez que la convección se detiene durante suficiente tiempo, el agua dulce puede acumularse y formar una capa superficial de baja densidad. Esto hace que sea cada vez más difícil reiniciar la convección, y en algún momento, se apaga permanentemente. Se puede ver que esto funciona incluso si la convección es intermitente en presencia de variabilidad climática aleatoria.

Hay dos regiones principales de convección dentro de la AMOC actual: una en la región del giro subpolar del Atlántico norte (incluyendo los mares de Labrador e Irminger) y otra más al norte en los mares nórdicos. En muchos experimentos de modelos, la convección del Mar de Labrador ha sido propensa a apagarse, ralentizando no solo la AMOC sino también el giro subpolar, un enorme flujo de rotación en sentido antihorario al sur de Groenlandia e Islandia (Figura 4). Una vez que la convección (que normalmente extrae el calor de la columna de agua por mezcla de agua más caliente hasta la superficie, donde el calor se pierde a la atmósfera) ha sido limitado de esta manera, menos calor se pierde a través de la superficie del mar, y toda la columna de agua se vuelve menos densa. Esto ralentiza la AMOC, que después de todo es impulsada por las aguas frías y de alta densidad que empujan hacia el sur desde las altas latitudes. Por lo tanto, un cierre de la convección puede ayudar a desencadenar un cierre de la AMOC. Y debido a que la convección es un proceso a pequeña escala, no se captura bien en la mayoría de los modelos actuales, añadiendo una capa de incertidumbre sobre el futuro.

AMOC flujos superficiales actuales

FIGURA 4. Se muestran los flujos superficiales actuales (líneas continuas) y los flujos profundos (líneas discontinuas) para el Atlántico norte y los mares nórdicos. 

Cambios drásticos de la AMOC en el pasado

Basándonos en este entendimiento de los mecanismos de inestabilidad de la AMOC, podemos examinar algunos cambios climáticos dramáticos que han ocurrido en el pasado reciente—"reciente," es decir, desde una perspectiva del paleoclima, en los últimos 100.000 años.

En 1987, Wally Broecker publicó un artículo ahora famoso en la revista Nature titulado "¿Sorpresas desagradables en el invernadero?". En él, discutía datos de núcleos de sedimentos profundos del mar y agujeros perforados en la capa de hielo de Groenlandia, señalando que estos datos revelan que "el clima cambió frecuentemente y en grandes saltos" en lugar de manera suave y gradual. Dados los patrones regionales de estos cambios, identificó a la AMOC (en ese momento conocida como la "cinta transportadora del Atlántico") como la culpable. Advirtió que al liberar gases de efecto invernadero, "jugamos a la ruleta rusa con el clima [y] nadie sabe qué hay en la recámara activa del arma."

En las décadas desde entonces, hemos llegado a distinguir dos tipos de eventos climáticos abruptos que ocurrieron repetidamente durante la última Edad de Hielo, centrados alrededor del Atlántico norte pero con repercusiones globales.

El primer tipo son los eventos Dansgaard-Oeschger (DO), nombrados en honor al investigador danés de núcleos de hielo Willy Dansgaard y su colega suizo Hans Oeschger. Más de 20 eventos se muestran prominentemente como picos de calentamiento abrupto de 10°–15°C en una o dos décadas en los datos de núcleos de hielo de Groenlandia. Se pueden explicar como arranques súbitos de la convección oceánica en los mares nórdicos cuando la convección de la Edad de Hielo ocurría mayormente solo en el Atlántico abierto al sur de Islandia (Figura 5). La configuración de la circulación oceánica cálida que alcanzó el extremo norte aparentemente no era estable bajo las condiciones de la Edad de Hielo: se debilitó gradualmente, hasta que después de algunos cientos de años, la convección y el evento cálido terminaron nuevamente. Es, por lo tanto, un ejemplo de un cambio convectivo de encendido-apagado como se ha visto anteriormente, con la convección de los mares nórdicos encendiéndose y apagándose.

El segundo tipo son los eventos Heinrich, nombrados en honor al científico alemán Hartmut Heinrich. Involucran enormes masas de hielo que episódicamente se deslizaron hacia el mar desde la capa de hielo Laurentida de varios miles de metros de espesor que cubría América del Norte en ese momento. Estos icebergs derivaron a través del Atlántico, dejando capas distintivas de detritos arrastrados por el hielo en el fondo del océano y añadiendo agua de deshielo fresca a la superficie del océano. Esto llevó a cambios climáticos aún más dramáticos, vinculados a un colapso completo de la AMOC. Tanto hielo entró en el océano que los niveles del mar aumentaron varios metros. La evidencia de que esta cantidad de agua dulce ingresando al Atlántico norte cerró la AMOC se encuentra en el hecho de que la Antártida se calentó mientras que el hemisferio norte se enfrió, lo que indica que el enorme transporte de calor de la AMOC desde el extremo sur a través del ecuador hasta el extremo norte esencialmente se detuvo.

Tanto los eventos Dansgaard-Oeschger como los eventos Heinrich, aunque más fuertes alrededor del Atlántico norte, tuvieron grandes repercusiones climáticas globales incluso lejos del Atlántico, ya que afectaron las bandas de lluvia tropicales que resultan del movimiento ascendente de aire cálido sobre el "ecuador térmico." Durante los eventos cálidos de Dansgaard-Oeschger, estas bandas de lluvia se desplazaron hacia el norte, llevando a condiciones cálidas y húmedas en los trópicos del norte hasta Asia. Pero durante los eventos Heinrich, las bandas de lluvia se desplazaron hacia el sur, llevando a sequías catastróficas en la región del monzón afro-asiático. ¿Podrían cambios similares en las bandas de lluvia tropicales estar en nuestro futuro?

 

La AMOC durante la última Edad de Hielo

FIGURA 5. La AMOC durante la última Edad de Hielo. (a) El estado frío (stadial) prevalente. (b) El estado más cálido (interestadial) durante los eventos Dansgaard-Oeschger, mostrando el cambio de temperatura. La resolución muy gruesa de ese modelo subestima el efecto de calentamiento de los eventos Dansgaard-Oeschger.

sábado, 5 de octubre de 2024

Una señal de alerta temprana muestra que la AMOC está en curso de superar un punto de inflexión

Esto es una traducción resumida del artículo original

Uno de los puntos de inflexión climática más destacados es la circulación meridional de vuelco del Atlántico (AMOC), (uno de cuyos brazos es la conocida como corriente del Golfo) Que potencialmente puede colapsar debido a la entrada de agua dulce en el Atlántico Norte. Aunque el colapso de la AMOC ha sido inducido en modelos climáticos globales complejos con un fuerte forzamiento de agua dulce, los procesos de este colapso de la AMOC hasta el momento han sido  investigados. Aquí se muestran los resultados del primer estudio sobre este punto de inflexión.

Se incluye un modelo del sistema terrestre, incluidos los grandes impactos climáticos que produciría su colapso. Usando estos resultados, se ha desarrollado un sistema basado en la física como señal de alerta temprana observable de la AMOC. Es decir un valor físico medible  mínimo que nos servirá como señal de alerta temprana para advertirnos sobre el inminente colapso de la AMOC. Los últimos reanálisis indican que la situación actual de la AMOC está en curso hacia el colapso. 

Introducción 

La circulación meridional de inversión del Atlántico (AMOC) efectivamente transporta calor y sal a través del océano global y modula fuertemente el clima regional y global. Mediciones de sección continua de la AMOC, están disponibles desde 2004 sobre en 26°N han demostrado que la fuerza de la AMOC ha disminuido en unos pocos Sverdrups desde 2004 hasta 2012 y posteriormente se ha vuelto a fortalecer (1 Sv = 106 m3/s) [es decir un millón de metros cúbicos por segundo o cinco veces el caudal de amazonas en su desembocadura]. Una escala de tiempo más larga sobre la variabilidad de la fuerza de AMOC, estimada utilizando series temporales de la temperatura de la superficie del mar (SST), indica que la AMOC se ha debilitado en 3 ± 1 Sv desde aproximadamente 1950. A partir de estos registros, se ha sugerido que la AMOC está actualmente en su estado más débil en más de un milenio. La AMOC ha sido etiquetada como uno de los puntos de inflexión en el sistema climático, lo que indica que podría sufrir un cambio relativamente rápido bajo un forzamiento que se desarrolle lentamente. La AMOC es particularmente sensible al forzamiento de entrada de agua dulce en el océano, ya sea a través del flujo de agua de superficie (por ejemplo precipitación) o por entrada de agua dulce debido a escorrentía de ríos o derretimiento del hielo (por ejemplo, de la capa de hielo de Groenlandia). A pesar de ello, no se ha encontrado ningún colapso de la AMOC en observaciones históricas, pero si hay buena evidencia de registros proxy de que se han producido cambios abruptos en la AMOC en el pasado geológico reciente durante los llamados eventos Dansgaard-Oeschger  

Los indicadores de alerta temprana, sugieren que la AMOC actualmente se acerca a un punto de inflexión antes del final de este siglo. Aunque existe una gran necesidad de un enfoque más amplio, basado en observaciones  físicas, como indicadores de alerta temprana confiables que caractericen un punto de inflexión más robusto para la AMOC. 

Colapso de la AMOC

Para desarrollar un indicador de advertencia temprana, se realizó una simulación específica para encontrar un evento de punto de inflexión en la Circulación Meridional de Vuelco del Atlántico (AMOC, por sus siglas en inglés) en el descontinuado Modelo del Sistema Terrestre Comunitario (CESM; versión 1.0.5). Esta versión del CESM, que se utilizó en el Proyecto de Intercomparación de Modelos Acoplados (CMIP),  tenía resoluciones horizontales de 1° para los componentes de océano/hielo marino y de 2° para los componentes de atmósfera/tierra. Se comenzó a partir de una solución de equilibrio estadístico de una simulación de control preindustrial y se mantuvieron constantes los forzamientos de gases de efecto invernadero, solar y de aerosoles a niveles preindustriales durante la simulación. Se siguió un enfoque de cuasi-equilibrio  añadiendo una anomalía de flujo de agua dulce lentamente variable FH en el Atlántico Norte sobre la región entre las latitudes 20°N y 50°N. Esta anomalía de flujo de agua dulce se compensa en el resto del dominio, como se muestra en el recuadro de la Fig. 1A. Se aumentó linealmente el forzamiento del flujo de agua dulce con una tasa de 3 × 10−4 Sv por año hasta el año 2200, donde se alcanza un máximo de FH = 0.66 Sv. Tal simulación no se había realizado antes con un modelo climático global complejo (GCM). 

Bajo un forzamiento de agua dulce creciente, se encontró una disminución gradual (Fig. 1A) en la fuerza de la AMOC. La variabilidad natural domina la fuerza de la AMOC en los primeros 400 años; sin embargo, después del año 800, aparece una clara tendencia negativa debido al creciente forzamiento de agua dulce. Luego, después de 1750 años de simulación del modelo, se observó un colapso abrupto de la AMOC. La fuerza de la AMOC bajó aproximadamente de 10 Sv en el año 1750 del modelo (¡Ojo! no confundir con 1750 de nuestra era)  hasta los 2 Sv 100 años después (año del modelo 1850) y eventualmente se vuelve ligeramente negativa después del año 2000 del modelo. Tal respuesta transitoria de la AMOC (años del modelo 1750 a 1850) es espectacular considerando el lento cambio en el forzamiento de agua dulce (es decir, ΔFH = 0.03 Sv). La característica de la circulación de vuelco meridional y el transporte de calor asociado hacia el norte en el Océano Atlántico cayeron casi a cero y en un 75% (a 26°N), respectivamente, después del año modelo 2000 (Fig. 1, B a D). Este resultado difiere sustancialmente de las simulaciones anteriores con GCMs que habían utilizado forzamientos de agua dulce extremadamente grandes [por ejemplo, 1 Sv por año sobre 50°N a 70°N] o una gran perturbación de la  salinidad inicial.

Los cambios en la AMOC son impulsados principalmente por el forzamiento de agua dulce, e inducidos principalmente por retroalimentaciones internas. Además, basándonos en la variación de la AMOC (aquí aproximadamente 8 Sv), está claro que aparece un evento de punto de inflexión de la AMOC en la simulación del CESM,  que es el primero encontrado en un GCM complejo.

Un bajo un forzamiento de agua dulce que varía lentamente de 5 × 10⁻⁴ Sv por año. Los valores encontrados indican, que tanto el forzamiento de agua dulce como las retroalimentaciones internas son importantes para inducir cambios en la AMOC. Estas diferencias entre los dos diferentes estados de la AMOC (promedios de los años del modelo 2151 a 2200) se presentan en la fig. S1. La figura S3A muestra un enfriamiento de la SST (temperaturas de la superficie del mar) del Hemisferio Norte cuando la AMOC colapsa, con diferencias de SST de hasta 10°C cerca de Europa occidental. Por el contrario, la SST en el Hemisferio Sur aumenta debido al colapso, resultando en un patrón distintivo de balancín entre los hemisferios. 

 

AMOC está en curso de superar un punto de inflexión

Fig. 1. Colapso de la AMOC. (A) La fuerza de la AMOC a 1000 m y 26°N, donde el sombreado rosado indica los rangos observados. Las líneas de color cian indican la magnitud de FH. La flecha roja indica el punto de inflexión de la AMOC (año modelo 1758), y las secciones azules indican los períodos de 50 años utilizados en (B) a (D). Recuadro: El experimento de hosing donde se añade agua dulce a la superficie del océano entre 20°N y 50°N en el Océano Atlántico (+FH) y se compensa sobre la superficie oceánica restante (−FH). Las secciones negras indican las latitudes 26°N y 34°S sobre las cuales se determinan la fuerza de la AMOC y el transporte de agua dulce (FovS), respectivamente. (B a D) Función de corriente de la AMOC (Ψ) y transporte de calor meridional del Atlántico (MHT) para los años modelo 1 a 50, 1701 a 1750 y 2151 a 2200. Los contornos indican las isolíneas de Ψ para diferentes valores.

¿Qué es FovS?

Es un término que se refiere al transporte de salinidad por la Circulación Meridional de Retorno del Atlántico (AMOC) en la latitud de 34°S. Es una medida del flujo neto de salinidad que la AMOC transporta en esa latitud específica del Atlántico.

En contextos de estudios climáticos, la FovS se utiliza para entender cómo los cambios en la salinidad y el flujo de agua dulce afectan la estabilidad y el comportamiento de la AMOC. Un valor negativo de la FovS indica que hay un transporte neto de salinidad hacia el sur (fuera del Atlántico), mientras que un valor positivo indica un transporte neto hacia el norte (dentro del Atlántico).


Este patrón surge de la reducción en el intercambio del transporte de calor meridional entre los hemisferios.  Las salinidades en los primeros 100 metros de profundidad del Atlántico Norte también están fuertemente influenciadas bajo el colapso de la AMOC (fig. S1B). Cabe señalar que las salinidades fuera del Atlántico han aumentado en parte debido a la compensación del flujo de agua dulce utilizada en la configuración del experimento de cuasi-equilibrio. A partir de los cambios en la profundidad máxima anual de la capa de mezcla (fig. S1C), se puede deducir que la convección profunda cesa en el Atlántico Norte (alrededor de Groenlandia), lo cual está en concordancia con el estado invertido de la AMOC (Fig. 1D). Otras regiones, como el Océano Austral, muestran un aumento en la profundidad de la capa de mezcla. El debilitamiento de la AMOC resulta, mediante el balance geostrófico, https://es.wikipedia.org/wiki/Corriente_geostr%C3%B3fica en un aumento dinámico del nivel del mar en el Océano Atlántico (fig. S1D) y algunas regiones costeras experimentan un aumento dinámico del nivel del mar de más de 70 cm.

Impactos climáticos de los cambios en la SST 

Debido al colapso de la AMOC también afecta a la atmósfera y a la distribución global del hielo marino. Las respuestas atmosféricas (fig. S2) consisten en un patrón de balancín en la temperatura superficial a 2 metros, un desplazamiento hacia el sur de la zona de convergencia intertropical (ITCZ)  y el fortalecimiento de la célula de Hadley en el Hemisferio Norte. El gradiente de temperatura meridional es más fuerte sobre el Hemisferio Norte, esto amplifica la corriente en chorro subtropical, mientras que en el Hemisferio Sur ocurre lo contrario. Durante el debilitamiento gradual de la AMOC en los primeros 1400 años del modelo, no hubo tendencias significativas en la temperatura superficial media global o en el área global de hielo marino. Un vez se produce el colapso de la AMOC, el hielo marino ártico (marzo) se extiende hasta 50°N y hay un retroceso gradual del hielo marino antártico (septiembre) (fig. S3). La vasta expansión del hielo marino del Hemisferio Norte amplifica aún más el enfriamiento a través de la retroalimentación hielo-albedo. Estos hallazgos son cualitativamente similares para un fuerte debilitamiento de la AMOC a 3 a 4 Sv.

Las respuestas del océano, la atmósfera y el hielo marino mencionadas anteriormente influyen fuertemente en los climas regionales de todo el mundo (Fig. 2). El clima europeo se hace significativamente diferente después del colapso de la AMOC, mientras que para otras regiones solo ciertos meses experimentan cambios significativos. La selva amazónica también muestra un cambio drástico en sus patrones de precipitación debido a los desplazamientos de la ITCZ, y la estación seca se convierte en la estación húmeda y viceversa. Estos cambios en la precipitación inducidos por la AMOC podrían perturbar gravemente el ecosistema de la selva amazónica y potencialmente conducir a puntos de inflexión en cascada. El Hemisferio Norte muestra temperaturas más frías después del colapso de la AMOC, mientras que sucede lo contrario en el Hemisferio Sur.

El clima europeo se ve muy afectado (Fig. 3A) bajo el colapso de la AMOC. Cabe señalar que los cambios correspondientes ocurren dentro de un período relativamente corto (años modelo 1750 a 1850) y bajo un cambio muy pequeño en el forzamiento superficial de agua dulce. La tendencia anual promedio de la temperatura superficial atmosférica excede 1°C por década en una amplia región del noroeste de Europa, y para varias ciudades europeas, se encuentra que las temperaturas disminuyen entre 5° y 15°C (Fig. 3C). Las tendencias son aún más notables al considerar meses específicos (Fig. 3B). Por ejemplo, las temperaturas de febrero para Bergen (Noruega) disminuirán en aproximadamente 3.5°C por década (Fig. 3D). Estas tendencias de temperatura relativamente fuertes están asociadas con la retroalimentación hielo-albedo a través de la vasta expansión del hielo marino ártico (fig. S5A).

Indicador de advertencia temprana basado en la física 

A partir de modelos climáticos idealizados del océano, se ha sugerido que el transporte de agua dulce de la AMOC a 34°S, indicado por FovS, es un indicador importante de la estabilidad de la AMOC. La razón es que esta cantidad es una medida de la fuerza de la retroalimentación de advección de sal, que se considera crucial en el punto de inflexión de la AMOC.

Colapso AMOC, Climogramas para diferentes regiones.

Fig. 2. Climogramas para diferentes regiones. Seis regiones diferentes (promedio espacial sobre cajas de 10° × 10°), donde las barras indican la precipitación mensual y las curvas indican las temperaturas mensuales. El climograma se determina para los años modelo 1 a 50 (barras y curvas rojas) y los años modelo 2151 a 2200 (barras y curvas azules). Nótese los diferentes rangos verticales para cada climograma. Las letras P y t en las barras indican diferencias mensuales significativas (P < 0.05, prueba t de Welch bilateral. para precipitación y temperatura, respectivamente.

 

Respuesta de la temperatura superficial durante el colapso de la AMOC

Fig. 3. Respuesta de la temperatura superficial durante el colapso de la AMOC. (A) Tendencia de la temperatura superficial a 2 metros promediada anualmente (años del modelo 1750 a 1850). Los marcadores indican tendencias no significativas [P > 0.05, prueba t]. (B) Similar a (A) pero ahora para la tendencia de la temperatura superficial a 2 metros en febrero. Los puntos rojos indican cinco ciudades diferentes utilizadas en (C) y (D). Nota las diferentes escalas de la barra de colores entre (A) y (B). (C) Diferencia de temperatura (con respecto al año del modelo 1600) para cinco ciudades diferentes, incluyendo la fuerza de la AMOC. Las tendencias se determinan durante los años del modelo 1750 a 1850 (sombreado amarillo) durante los cuales la fuerza de la AMOC disminuye considerablemente. (D) Tendencias mensuales de temperatura para las cinco ciudades diferentes.

Puntos clave

Como resultado de esta simulación detallada se han observado algunos puntos clave adicionales, estos serían:

El derretimiento de hielo de Groenlandia añade más agua dulce al océano y puede debilitar la AMOC.

La AMOC transporta agua salada hacia el norte. Si se debilita, transporta menos sal, lo cual aumenta la perturbación inicial de agua dulce.

El modelo CESM muestra que inicialmente la AMOC exporta sal fuera del Atlántico, lo que no concuerda con las observaciones reales.

Este sesgo ha sido observado en diferentes fases de modelos climáticos: CMIP3, CMIP5 y CMIP6.

En los modelos CMIP6, el sesgo se debe a grandes discrepancias en el flujo de agua dulce sobre el Océano Índico comparado con observaciones reales.

El Atlántico es una cuenca con evaporación neta, donde se evapora más agua de la que entra.

Para equilibrar el presupuesto de agua dulce del Atlántico, se necesita un mayor transporte de sal hacia  el interior de la zona estudiada o de agua dulce hacia el exterior.

La convergencia de agua dulce en el Atlántico no compensa completamente los cambios en el flujo superficial de agua dulce, resultando en almacenamiento de agua dulce en el Atlántico, especialmente por debajo de los 1000 metros de profundidad.

Los cambios en el FovS son impulsados principalmente por cambios en la salinidad y luego por cambios en la circulación oceánica a 60°N.

FovS juega un papel crucial en el equilibrio del presupuesto de agua dulce del Atlántico bajo el forzamiento de las entradas de agua dulce.

Antes del colapso de la AMOC, los cambios en la salinidad son más significativos que los cambios en la velocidad de la corriente.

Después del colapso de la AMOC, la disminución en la velocidad reduce la magnitud de la FovS.

Eventualmente, cuando las salinidades se ajustan al nuevo estado colapsado, FovS vuelve a ser positivo.

FovS alcanza un mínimo justo antes del colapso de la AMOC. Este mínimo ocurre en el año 1732 de la simulación, mientras que el colapso de la AMOC ocurre alrededor del año 1758.

La variabilidad de FovS aumenta al acercarse al colapso de la AMOC, lo que indica una pérdida de estabilidad.

Modelos climáticos sugieren que el mínimo de FovS precede al colapso de la AMOC.

Indicadores de Advertencia Temprana:

Los indicadores clásicos indicadores de advertencia (varianza y autocorrelación) no muestran un aumento consistente antes del colapso.

Un aumento en la varianza de FovS se considera una señal de advertencia temprana prometedora para un colapso de la AMOC.

El punto de inflexión de la AMOC se puede estimar extrapolando la tendencia de FovS.

Análisis de datos muestran una tendencia negativa en la FovS, sugiriendo que la AMOC está cerca de un punto de inflexión.

Evidencia Paleoclimática y Modelos Idealizados:

Los cambios rápidos en la AMOC durante eventos históricos apoyan la teoría del punto de inflexión. Coinciden con un enfriamiento rápido y significativo del hemisferio norte.

Conclusión:

Los cambios observados en FovS y AMOC en estas simulaciones están dentro del rango de los modelos CMIP6 actuales, lo que refuerza la validez de estos resultados.

En resumen, el mínimo de la FovS precede al colapso de la AMOC, también es importante evaluar los cambios en salinidad y la velocidad de la corriente. La FovS se ha revelado útil como indicador de advertencia temprana previa al colapso de la AMOC. También son necesarias observaciones futuras y ajustes en los modelos climáticos para mejorar las predicciones y atajar las discrepancias observadas entre la realidad y los modelos.

El estudio sugiere que estamos acercándonos al colapso, indicando que nos encontramos en una fase avanzada de la simulación. Si consideramos que el colapso es inminente y ocurrirá antes de finales de este siglo (2100), podemos interpretar que:

Si estamos en una fase avanzada de la simulación, podríamos estar alrededor del año 1700-1750 del modelo, donde los efectos del forzamiento de agua dulce comienzan a dominar y empujan hacia el colapso.

Respuesta oceánica colapso AMOC

Figura S1: Respuesta oceánica. (a): Las diferencias de la temperatura de la superficie del mar entre los dos estados de la AMOC (años del modelo 2.151 – 2.200 menos 1 – 50), los marcadores indican diferencias no significativas (p ≥ 0.05, prueba t de Welch). (b – d): Similar al panel a, pero ahora para (b): salinidad promediada verticalmente (0 – 100 m), (c): profundidad máxima anual de la capa de mezcla y (d): nivel del mar dinámico.

 

Respuesta atmosférica colapso AMOC

Figura S2: Respuesta atmosférica. (a): Las diferencias de la temperatura superficial a 2 metros entre los dos estados de la AMOC (años del modelo 2.151 – 2.200 menos 1 – 50), los marcadores indican diferencias no significativas (p ≥ 0.05, prueba t de Welch). Las curvas rojas (azules) muestran valores positivos (negativos) de las diferencias de presión a nivel del mar con magnitudes de (-)1 hPa y (-)2 hPa para las curvas discontinuas y continuas, respectivamente. (b – f): Similar al panel a, pero ahora para (b): función de densidad de probabilidad de la ubicación de la ITCZ, (c): altura geopotencial de 850 hPa (sombreado) y velocidades horizontales de 850 hPa (vectores), (d): precipitación.

 

Respuesta del hielo marino Colapso AMOC

Figura S3: Respuesta del hielo marino. (a): La fracción de hielo marino en el Ártico para marzo durante los años del modelo 2.151 – 2.200. La curva azul oscura muestra el borde del hielo marino en el Ártico (es decir, la isolínea de fracción de hielo marino del 15%) para marzo durante los años del modelo 1 – 50. (b): Similar al panel a, pero ahora para las fracciones de hielo marino en la Antártida para septiembre. (c): El área de hielo marino en el hemisferio norte para marzo y septiembre, incluyendo la temperatura superficial a 2 metros para la media global y del hemisferio norte. El área de hielo marino se basa en todas las celdas de la cuadrícula con fracciones de hielo marino superiores al 15%. Las series temporales de temperatura superficial a 2 metros se muestran como promedios de 5 años (para reducir la variabilidad de las series temporales). (d): Similar al panel c, pero ahora para el área de hielo marino en el hemisferio sur y la temperatura superficial a 2 metros del hemisferio sur.



sábado, 2 de marzo de 2024

Advertencia sobre un posible próximo colapso de la Circulación de inversión meridional del Atlántico (AMOC) “Corriente del Golfo”

La circulación meridional de inversión del Atlántico (AMOC) o popularmente conocida como corriente del Golfo es un elemento importante en el sistema climático y un futuro colapso tendría graves impactos sobre el clima en la región del Atlántico Norte. En los últimos años se ha informado sobre un debilitamiento de la circulaciónpero las evaluaciones del Panel Intergubernamental sobre Cambio Climático (IPCC),  basadas en la Intercomparación de Modelos Climáticos y simulaciones del modelo del Proyecto (CMIP)  sugieren que es poco probable que se produzca un colapso total dentro del siglo XXI. Sin embargo, nuevas estimaciones arrojan una preocupación adicional debido a las crecientes concentraciones de gases de efecto invernadero. Predicciones basadas en observaciones que dependen de la detección de Señales de Alerta Temprana (SAT), principalmente han sido reportados recientemente para la AMOC un aumento de la varianza y aumento de la autocorrelación (parada crítica), Se muestra una significancia estadística y estimadores basados en datos. Se estima que se producirá un colapso de la AMOC alrededor de mediados de siglo bajo el escenario actual de emisiones futuras.

Un próximo colapso de la circulación meridional del Atlántico (AMOC) es una gran preocupación ya que es uno de los puntos de inflexión más importantes en el sistema climático de la Tierra. En los últimos años, modelos y reconstrucciones paleoclimáticas indican que las más fuertes fluctuaciones climáticas abruptas conocidas, los eventos Dansgaard-Oeschger  están relacionados con la naturaleza bimodal de la AMOC. Numerosos modelos climáticos muestran un comportamiento de histéresis, donde el cambio de un parámetro de control, típicamente la entrada de agua dulce en el Atlántico Norte, hace que los modelos diverjan. Los modelos más modernos del sistema climático-oceánico terrestre pueden reproducir tal escenario, pero la divergencia entre modelos es grande y el punto crítico del umbral está mal restringido. 

Basado en el generador de modelos CMIP5, el informe AR6 IPCC  cita un colapso en el siglo XXI es muy improbable (confianza media). En los modelos CMIP6  , hay una mayor dispersión en la respuesta de la AMOC a escenarios de calentamiento, por lo tanto una mayor incertidumbre en la evaluación de un futuro colapso. Sin embargo, existen sesgos en los modelos hacia una sobreestimación de la estabilidad de la AMOC, tanto desde la sintonía con el clima histórico registrado, una mala representación de la formación de aguas profundas, salinidad y escorrentía glaciar. Cuando sistemas complejos, como la circulación de vuelco, sufren transiciones críticas al cambiar un parámetro de control a través un valor crítico, ocurre un cambio estructural en la dinámica. El estado previamente estadísticamente estable deja de existir y el sistema pasa a un estado estadísticamente estable diferente. El sistema sufre una divergencia, que para un valor suficientemente cerca del valor crítico puede ocurrir en un tiempo limitado. Además de un declive de la AMOC antes de una transición crítica, hay señales de alerta temprana, cantidades estadísticas, que también cambian antes de que ocurra este punto de inflexión. 

Estos puntos críticos son: un aumento de la varianza y un aumento de la autocorrelación (parada crítica). Este último también se denomina “pérdida de resiliencia”, especialmente en el contexto de la crisis ecológica. Estos dos conceptos de equilibrio estadístico se utilizan como predictores reales de una próxima transición que depende del supuesto de dinámica cuasiestacionaria. La AMOC sólo ha sido objeto de seguimiento continuo desde 2004. Mediante mediciones combinadas de instrumentos amarrados, corrientes eléctricas inducidas en cables submarinos y medidas de superficie a través de satélite.  

Se ha observado durante el período 2004-2012, una disminución en el AMOC, pero se necesitan registros más largos para evaluar su significado. Para ello se han utilizado técnicas cuidadosas de toma de registros. Aplicadas a registros más largos de temperatura de la superficie del mar (SST), respaldada por un estudio de un gran conjunto de simulaciones de modelos climáticos, se ha encontrado que la SST en la región del giro subpolar (SG) del norte Atlántico (área marcada con un contorno negro en la Fig. 1a) para contener un registro óptimo de la fuerza del AMOC. La Figura 1b muestra el SG y el GMSST Obtenidos de un conjunto de datos del Centro sobre hielo marino y temperatura de la superficie del mar (HadISST). La Figura 1c muestra la anomalía SG y la Figura 1d muestra la anomalía GM. Con una clara tendencia al calentamiento global en la última mitad del registro. El registro de la AMOC para el período 1870-2020 se muestra en la Fig. 1e. Esto es la base para el análisis. Se ha informado que este índice y otros similares al índice AMOC muestran tendencias significativas en la media, la varianza y la autocorrelación, que indica una alerta temprana de un cese de AMOC. 

Sin embargo, una tendencia en los sistemas de alerta temprana dentro de un período limitado de a observación podría ser una fluctuación aleatoria dentro de las estadísticas de estado estacionario. Por lo tanto, para una evaluación sólida de un posible cese, es necesario establecer un nivel de confianza estadística para un cambio por encima de las fluctuaciones naturales.  Esto no es fácil de hacer teniendo en cuenta sólo una cosa: la evolución observada  del enfoque de la transición. Aquí se establece tal medida de confianza para la varianza y la autocorrelación y se demuestra que la varianza es la más confiable de las dos. La contribución de la otra es un estimador no sólo de si una transición está cerca, aunque también es el momento en que se espera que se produzca la transición crítica. La estrategia es inferir la evolución de la AMOC únicamente en cambios observados en la media, la varianza y la autocorrelación. La elección típica del parámetro de control es el flujo de agua dulce hacia el Atlántico Norte.  La escorrentía de ríos, el deshielo de Groenlandia y exportación de esta agua desde el Ártico.  

Se supone que la temperatura media global T representa el parámetro de control. Aunque T ha aumentado desde ~1920 (Fig. 1d), el aumento no es del todo lineal con el tiempo. Todo lo que se asume que el AMOC está en un estado de equilibrio antes de un cambio hacia la transición. La suposición más simple es que el cambio es suficientemente lento y que el parámetro de control se acerca al valor crítico (desconocido) linealmente con el tiempo. Esta suposición se confirma por un ajuste cercano del modelo estimado la AMOC observado su registro.

El principal impulsor del cambio climático,  es el logaritmo de la concentración atmosférica de CO2, de hecho, aumenta casi linealmente con el tiempo en el período industrial. Los resultados son firmes al respecto de este parámetro como inductor de los cambios en la AMOC. En este trabajo, se indica que lo más probable es un cese de la AMOC que ocurrirá alrededor entre 2025-2095 (con un intervalo de confianza del 95%). 

Resultados 

Modelado y detección de la transición crítica. Denotemos el registro AMOC observado por x (t) (Fig. 1e). La modelamos por un proceso estocástico Xt, que, dependiendo de un parámetro de control λ<0, corre el riesgo de sufrir una transición crítica a través de una divergencia para λ = λc = 0. El sistema se encuentra inicialmente en una situación estadísticamente estable. Es decir, sigue alguna distribución estacionaria con constante λ = λ0. Estamos desinformados sobre la dinámica que rige la evolución de Xt pero puede asumir una dinámica efectiva, que, con λ suficientemente cerca del valor crítico.

La incertidumbre se expresa a través de las varianzas de los estimadores obtenidos de las observaciones dentro de una ventana de tiempo. Son estimadores y por tanto variables  estocásticas con variaciones alrededor de los valores verdaderos. Detección de un SAT en algún nivel de confianza elegido  (como 95 o 99%) requiere uno de los estimadores que para una ventana determinada es estadísticamente diferente de los valores de referencia, que también dependen del tamaño de la ventana como cuán diferentes son los SAT de sus valores de referencia. Escalas de tiempo en señales de alerta temprana La detección de una próxima transición mediante medidas estadísticas involucra varias escalas de tiempo. La escala de tiempo interna primaria es la tiempo de autocorrelación, en estado estacionario. 

 

Advertencia sobre un posible próximo colapso de  la Circulación de inversión meridional del Atlántico (AMOC) “Corriente del Golfo”
Figura 1. a Registro de la circulación meridional atlántica (AMOC), temperatura superficial del mar (SST) y media global (GM). Región de giro subpolar (SG) (contorno negro) en la parte superior del hielo marino y temperatura de la superficie del mar del conjunto de datos del Centro Hadley (HadISST) Reconstrucción de SST para diciembre de 2020. La SST de la región SG ha sido identificada como una huella de la AMOC. b Registro mensual de la temperatura del agua del mar SST del SG y de la media global (GM). c, d anomalías SG y GM, a los registros se les ha restado la media mensual sobre el registro completo. e proxy AMOC, que aquí se define como la anomalía SG menos el doble de la anomalía GM, compensando el calentamiento global y la amplificación polar. 

Prediciendo un próximo colapso de la AMOC el registro de AMOC que se muestra en la Fig. 1e muestra una mayor varianza, γ autocorrelación, es decir, los sistemas de alerta temprana SAT obtenidos en 2020 se asignan al año 1995. Las estimaciones posteriores a 1970 se mantienen consistentemente por encima el límite superior del intervalo de confianza y muestran un aumento de la tendencia, y por lo que el sistema se está moviendo hacia un punto de inflexión con alta probabilidad. Se han utilizado dos métodos independientes  para comprobar la solidez de estos resultados:  un estimador de momentos  que utiliza las estimaciones de varianza y autocorrelación. La ventaja del primer método es que tiene menos supuestos; sin embargo, es sensible a la elección de tamaño de ventana. La ventaja del segundo método es que utiliza  la información de manera más eficiente y no necesita una ventana. El ajuste óptimo es el mismo que el método del momento, tc = 2057, con un intervalo de confianza del 95% entre 2025-2095.

Se simularon 1000 trayectorias del modelo original.  Con los parámetros estimados y repitiendo el procedimiento de estimación de cada conjunto de datos. La confianza depende de cómo de rápido se acerca el sistema al punto de inflexión. Con esto, la importancia de los SAT observados para la AMOC. 

Este es un resultado más fuerte que simplemente observando una tendencia significativa en los SAT. Se calcula cuando los SAT están significativamente por encima de las variaciones del nivel natural. Además, se ha proporcionado una estimación de cuando sucederá. Se predice con alta confianza que  se espera que suceda tan pronto como a mediados de siglo (2025-2095 con rango de un 95% de confianza). No se pueden descartar otros mecanismos en juego y, por tanto, una incertidumbre es mayor. Sin embargo, se ha reducido el análisis para tener tan pocos y sólidos supuestos como sea posible, y dada la importancia del AMOC para el sistema climático, no se deberían ignorar indicadores tan claros de un colapso inminente.

No se puede descartar la posibilidad de que un colapso sea sólo parcial y no conduzca a un colapso total de la AMOC como lo sugieren algunos modelos. Este resultado también se encuentra en un modelo oceánico más reciente. Se trata realmente de un resultado preocupante que debería llamar la atención por medidas rápidas y efectivas para reducir los gases de efecto invernadero a nivel global emisiones para evitar el cambio constante del control parámetro hacia el colapso de la AMOC (es decir, reducir el aumento de temperatura aumento y entrada de agua dulce a través del derretimiento del hielo en el Región del Atlántico Norte). Como un colapso de la AMOC tendría fuertes implicaciones sociales, es importante monitorear el flujo y los SAT a partir de mediciones directas. El calentamiento en la región SG es mayor que la media global debido a la amplificación polar. 

 

Compensación del calentamiento global en registro de circulación de vuelco meridional del Atlántico (AMOC).
Figura 2.  Compensación del calentamiento global en registro de circulación de vuelco meridional del Atlántico (AMOC). En la temperatura de la superficie del mar (SST) registro AMOC, la compensación por el calentamiento global y la amplificación polar. Esto se hace restando la SST global (SSTGM) de la SST del giro subpolar (SG). (SSTSG). Al calibrar mediante el proxy AMOC (curvas rojas), el AMOC óptimo El proxy es SSTSG-2 SSTGM. Para garantizar la solidez de los resultados, se ha repetido el análisis restando 1x (púrpura) y 3x SSTGM (verde) y comparado con el óptimo 2x SSTGM restado (azul). Las estimaciones correspondientes para el momento del colapso se muestran en los mismos colores: La línea vertical media es la estimación máxima de probabilidad del momento de inflexión, el cuadro representa el 66,6% de confianza intervalo (definición de “probable” del Panel Intergubernamental sobre Cambio Climático (IPCC), mientras que la línea horizontal representa los intervalos de confianza del 99%.


Los resultados se dan en la Tabla 1.

Estimaciones e intervalos de confianza para el punto de inflexión. Utilizando tres indicadores del vuelco meridional del Atlántico circulación (AMOC)
Tabla 1  Estimaciones e intervalos de confianza para el punto de inflexión. Utilizando tres indicadores del vuelco meridional del Atlántico circulación (AMOC), donde la temperatura de la superficie del mar (SST) se resta 1, 2 o 3 veces la SST global Estimar IC del 95 % IC del 66 % 


Como conclusión, parece que la parada total de la corriente del golfo podría darse hacia 2057 con una probabilidad bastante alta, pero con un rango de años bastante extenso, es decir 2057 es el valor medio, podría producirse entre 2025 y 2095.

Artículo original de Nature



sábado, 7 de noviembre de 2015

¿Se está ralentizando la corriente del golfo?


Introducción


La corriente del golfo no es más que el brazo sur de una corriente mucho más importante, me refiero a la corriente del Atlántico Norte que a su vez es una parte importante de la circulación global de los océanos que intercambia calor del excedente ecuatorial hacia los polos, donde la energía se pierde por radiación térmica al espacio. Es como una 'cinta transportadora' oceánica global y su ralentización podría desestabilizar aún más nuestro cambiante clima mundial. No es esperable ninguna nueva edad de hielo pero si son posibles sus principales efectos negativos. Los efectos podrían darse en el clima mundial, la pesca, o también por ejemplo en las tormentas.

¿Qué está pasando en el Atlántico Norte?

El Atlántico Norte entre Terranova e Irlanda es prácticamente la única región del mundo que ha desafiado el calentamiento global e incluso se ha enfriado. El invierno pasado allí incluso fue el más frío desde que hay registros, mientras que a nivel mundial fue el más cálido registrado. Un estudio reciente publicado en 2015 atribuye este fenómeno  a un debilitamiento del sistema de la Corriente del Atlántico Norte, y al parecer este debilitamiento no tiene precedentes en los últimos mil años. ¿qué tiene de especial esta región entre Terranova e Irlanda?

anomalía corriente del golfo
Fig. 1 tendencia lineal de la temperatura desde 1900 hasta 2013. Tomado de RealClimate