Monte Perdido

Monte Perdido

sábado, 10 de junio de 2023

La capa de hielo de Groenlandia

Esto es un resumen del último informe del IPCC AR6 para Groenlandia.

Cambios recientes observados

En este artículo se presentan cambios en el tiempo de la masa de hielo de  Groenlandia y se evalúan los diferentes procesos que está causando el aumento de la pérdida de masa. El cambio de masa total de la capa de hielo de Groenlandia comparada con la pérdida en la Antártida, se presenta en la Figura 1. 

 

La capa de hielo de Groenlandia

Figura 1 Pérdidas en la capa de hielo antártica  y en la capa de hielo de Groenlandia (cambios de masa). Los valores que se muestran en gigatoneladas (1 Gt = 1000.000.000 toneladas, los números grandes muchas veces son inimaginables y los pasamos por alto, 1 Gt equivale a 1 Km3 de hielo)  y provienen de mediciones de satélites mediciones para el período 1992–2020. El rango de incertidumbre estimado, aparece en colores sombreados, para los respectivos cambios acumulativos. 

En la actualizad Groenlandia habría perdido unos 5000 Km3 de hielo desde 1992.


La extensión estimada de la capa de hielo en diferentes momentos se muestra en la Figura 3.

Para el siglo XX hay reconstrucciones del cambio de masa estimado para la capa de hielo de Groenlandia y sus glaciares periféricos para el periodo 1900–1983 y para el período 1901–1990. El registro de satélites se remonta a 1972  (Figura 2). La tasa de cambio de masa de la capa de hielo fue positiva (es decir, ganó masa) entre 1972-1980 (47 ± 21 Gt por año) y luego negativa (es decir, perdió masa; –51 ± 17 Gt por año  y –41 ± 17 Gt por año) en los periodos  1980–1990 y 1990–2000, respectivamente. Después de 1992, es muy probable que la tasa del cambio de la masa de hielo fuera más negativa durante 2012-2016 que durante 1992-2001, con un nivel de confianza muy alto de que la fusión en verano ha aumentado desde la década de 1990 a un nivel sin precedentes durante al menos los últimos 350 años. El registro se ha extendido hasta 2020. La capa de hielo de Groenlandia perdió 4890 [4140–5640] Gt de hielo entre 1992 y 2020, provocando un aumento del nivel del mar de 13,5 [11,4 a 15,6] mm. (Figura1 y 2). En resumen: los aproximadamente 5000 Km3 de hielo perdidos en Groenlandia entre 1992 y 2020 han hecho aumentar el nivel del mar entre 1,1 y 1,5 cm.

Datos recientes muestran que, después de dos veranos fríos en 2017 y 2018, con una pérdida de masa relativamente moderada de alrededor de 100 Gt  al año, el cambio de masa de 2019 (–532 ± 58 Gt por año) fue la mayor pérdida de masa anual en el registro. La tasa de pérdida de hielo fue, en promedio, 39 [–3 a 80] Gt por año durante el período 1992–1999, 175 [131 a 220] Gt por año durante el período 2000–2009 y 243 [197 a 290] Gt por año durante el período 2010-2019.

Recientemente ha comenzado a dominar la pérdida de masa de la capa de hielo de Groenlandia [balance de masa superficial (SMB)], en lugar de la descarga del hielo sobre los fiordos (debido al aumento del derretimiento de la superficie y escorrentía), aumentando del 42% de la pérdida de masa total para 2000–2005 al 68% para el periodo 2009–2012. La descarga de hielo en los fiordos fue relativamente constante entre 1972-1999, con una variación de alrededor del 6% para toda la capa de hielo, mientras que la fusión superficial varió por un factor de más de dos interanualmente, lo que lleva a una pérdida o ganancia de masa en un año dado (Figura 2). 

 

La capa de hielo de Groenlandia

 

La capa de hielo de Groenlandia

Figura 2.  Cambios de masa de hielo y tasas de cambio para las regiones de la capa de hielo de Groenlandia. 

(a) Serie temporal de cambios de masa para cada una de las principales cuencas de drenaje que se muestran en la figura del recuadro para los períodos 1972–2016, 1992–2018 y 1992–2020.

(g) Groenlandia dividida en siete regiones. Estimaciones de las tasas de cambio de masa del balance de masa superficial por región.

El patrón temporal en estos conjuntos de datos más largos conduce a una alta confianza que las pérdidas de masa de la capa de hielo de Groenlandia están cada vez más dominadas por la SMB, pero existe un alto nivel de confianza en que la pérdida de masa varía fuertemente, debido a la gran variabilidad interanual de esta. A escala regional, la altura de la superficie está disminuyendo en todas las regiones, y se han observado retiros generalizados del frente terminal y de ruptura de bloques de hielo (frentes glaciares).

Las mayores pérdidas masivas han ocurrido a lo largo de la costa oeste y en sureste de Groenlandia (Figura 2), concentrándose la descarga en unos pocos glaciares. Este patrón en esta región es consistente con las observaciones del sistema (GPS) que muestra el levantamiento elástico del lecho rocoso de decenas de centímetros entre 2007 y 2019 como resultado de la pérdida continua de masa de hielo. La serie temporal regional muestra que la fusión superficial ido reduciendo la cantidad de hielo gradualmente en todas las regiones, mientras que el aumento de la descarga en el sureste, centro este, noroeste y el centro-oeste se ha relacionado con el retroceso de los glaciares de marea. En resumen, los registros regionales detallados muestran un aumento en la pérdida de masa en todas las regiones después de la década de 1980, causado tanto por aumentos en la descarga de hielo por los glaciares en sus frentes, como por el derretimiento de hielo sobre la superficie (confianza alta), aunque los patrones varían entre las regiones. La pérdida de hielo más grande se produjo en el noroeste y el sureste de Groenlandia (confianza alta).

La variabilidad a gran escala la circulación atmosférica es un importante impulsor de la SMB a corto plazo. Este efecto de variabilidad atmosférica de la circulación tanto en la precipitación como en las tasas de fusión 

 

La capa de hielo de Groenlandia

Figura 3 Cambio de masa acumulada de la capa de hielo de Groenlandia y contribución equivalente al nivel del mar. 

(a) Una estimación basada en el rango de valores de la masa de la capa de paleo hielo de Groenlandia y los equivalentes del nivel del mar en relación con la actualidad y la mediana de todas las estimaciones centrales.

(b) (b, izquierda) pérdida de masa acumulada (y nivel del mar equivalente) desde 2015 desde 1972, la estimación pérdida de masa desde 1840 indicada con un recuadro sombreado, y proyecciones hasta 2100 Se muestran interpretaciones esquemáticas de reconstrucciones individuales de la extensión espacial de la capa de hielo de Groenlandia.

     (c) período cálido del Plioceno medio; 

     (d) Último Interglacial

(e) el Último Máximo Glacial: el sombreado gris muestra la extensión del       hielo en tierra. Mapas de cambios de elevación media 

    (f) 2010-2017 derivados de la altimetría del radar 

(g) cambios proyectados (2093-2100) 


fue impulsado por condiciones atmosféricas altamente anómalas. Patrones de circulación, tanto diarios como estacionales a escalas temporales. El derretimiento de la capa de hielo de Groenlandia está más fuertemente correlacionado con el índice de bloqueo de Groenlandia que con el índice de la Oscilación del Atlántico Norte de verano. Estudios han demostrado que una mayor insolación (reducción de la cobertura de nubes) conduce a un aumento de las tasas de fusión, particularmente sobre la zona de ablación de bajo albedo en la parte sur de la capa de hielo de Groenlandia. Por el contrario, un aumento de la nubosidad sobre las partes centrales de alto albedo de la capa de hielo, demostró que la radiación saliente conduce a una mayor fusión y una recongelación reducida de agua de deshielo. 

Los efectos de las nubes se compensan entre sí, el aumento en el derretimiento es causado por aumento de los flujos de calor. En resumen, existe una confianza media en que los cambios en la cobertura de nubes son un importante impulsor del aumento de las tasas de fusión en el parte sur y oeste de la capa de hielo de Groenlandia.

Las retroalimentaciones positivas de albedo contribuyeron sustancialmente a aumentar el derretimiento de la capa de hielo de Groenlandia posteriormente a la década de 1990. Varias retroalimentaciones (en su mayoría positivas) que involucran albedo de superficie operan sobre las capas de hielo. La amplificación de la fusión por el aumento observado de la exposición al hielo desnudo a través de la migración de la línea de nieve a partes más altas de la capa de hielo desde el año 2000  fue cinco veces más fuerte que el efecto de los procesos hidrológicos y biológicos que conducen a la reducción de albedo del hielo. Las impurezas, en las partes biológicamente activas conducen a una reducción del albedo y se estima que han aumentado la escorrentía de hielo desnudo en el sector suroeste de la capa de hielo de Groenlandia alrededor del 10%. En resumen,  existe un alto nivel de confianza en que el derretimiento de la capa de hielo de Groenlandia aumentó desde alrededor de 2000 amplificado por retroalimentaciones positivas de albedo, siendo la expansión de la extensión del hielo desnudo el factor dominante, y el albedo en la zona de hielo desnudo está controlado principalmente por impurezas biológicas.

Alrededor de la mitad del agua de deshielo de la superficie de la capa de hielo de Groenlandia entre 1960-2014 fue escorrentía, mientras que la mayor parte del resto se infiltró en el firn (nieve compactada)  y nieve, donde o bien se volvió a congelar o se acumuló en acuíferos. Una disminución del contenido de aire en el firm entre 1998-2008 y 2010-2017 en el área de percolación de baja acumulación del oeste de Groenlandia, redujo la capacidad de retención de agua de deshielo.

Además, la infiltración de agua de deshielo en el firn puede estar fuertemente limitada por losas de hielo de baja permeabilidad creadas por la recongelación de infiltrado agua de deshielo. Observaciones y modelos recientes indican que las capas de baja permeabilidad que se expanden rápidamente conducen a un aumento en el área de escorrentía desde 2001.

En resumen el almacenamiento de agua de deshielo y recongelación puede amortiguar temporalmente un aumento de derretimiento a gran escala, pero se han identificado factores limitantes.

Las temperaturas del océano cerca de la zona de puesta a tierra de los glaciares de marea es críticamente importante para su tasa de descarga por ruptura, pero hay poca confianza en la comprensión de su respuesta al forzamiento oceánico. 

El aumento de icebergs sobre el mar, se ha asociado con un período de retroceso generalizado de los glaciares de marea. Hay pruebas sólidas de un rápido derretimiento submarino en glaciares de marea. Cambios en el derretimiento submarino y la descarga de agua de deshielo subglacial pueden desencadenar un aumento descarga de hielo al reducir el apoyo al flujo de hielo y promover su ruptura; El calentamiento de las aguas oceánicas ha estado implicado en el reciente adelgazamiento y ruptura del hielo flotante lenguas en el noreste y noroeste de Groenlandia. En escalas temporales decenales, La posición final de los glaciares de marea se correlaciona con el derretimiento submarino. En escalas de tiempo más cortas, glaciares individuales o grupos de glaciares pueden comportarse de manera diferente y asincrónica, y no hay asociaciones siempre claras entre la temperatura del agua y las tasas de ruptura glaciar o retroceso. En resumen, las aguas oceánicas más cálidas y el aumento de la temperatura de descarga subglacial de superficie fundida en los márgenes de la terminación marina de los glaciares aumentan el derretimiento submarino, lo que conduce a un aumento de la descarga de hielo. Hay confianza media en que esto contribuyó a la aumento de la tasa de pérdida de masa de Groenlandia, particularmente en el período 2000-2010 cuando se observó un aumento de la descarga en el sureste y noroeste.

Permanecen aún grandes incertidumbres en el espesor del hielo de alrededor de la mitad de los glaciares de descarga y las regiones de icebergs siguen estando pobremente muestreadas cerca de los extremos del glaciar. Existe un alto grado de confianza en que la batimetría (que rige las masas de agua que desembocan en los fiordos) y la geometría del fiordo y topografía del lecho rocoso (control de la dinámica del hielo) modulan la respuesta de glaciares individuales al forzamiento climático.

Evaluación del modelo

El progreso reciente confirma que existe una confianza media en la capacidad de los modelos del clima para simular cambios en el derretimiento de la capa superficial de hielo de Groenlandia. Las deficiencias restantes en el acoplamiento entre modelos de clima y las capas de hielo (p. ej., baja resolución espacial) limitaron la adecuada representación de las retroalimentaciones entre ellos. Las simulaciones de derretimiento superficial resultantes se comparan mejor con modelos climáticos regionales y observaciones, pero las deficiencias restantes conducen a problemas para reproducir un estado actual de la capa de hielo a las observaciones. En resumen, hay una confianza media en los datos cuantitativos sobre las simulaciones del estado actual de la capa de hielo de Groenlandia.

Las interacciones hielo-océano siguen siendo poco conocidas y difíciles de modelar, con parametrizaciones a menudo utilizadas para estimar la ruptura de glaciares que terminan en el mar. Debido a las dificultades de modelar gran cantidad de terminaciones marinas glaciares y la disponibilidad limitada de datos sobre la roca madre de alta resolución, la mayoría del trabajo de modelado reciente sobre los glaciares de descarga de Groenlandia está centrado en glaciares individuales o en un número limitado, o una región específica.

El estudio de las contribuciones de los cuatro glaciares más grandes sobrestimó el total de la contribución de los glaciares de la capa de hielo de Groenlandia, debido a las diferencias en respuesta entre glaciares grandes y pequeños. Las interacciones hielo-océano tienen el potencial de desencadenar un retroceso extensivo de los glaciares en escalas de décadas, como lo indican las observaciones. Un punto de interés de los modelos de la capa de hielo continental ha sido el tratamiento mejorado de glaciares que terminan en el mar a través de la inclusión de procesos de ruptura. Un conjunto de datos topográficos mejorados del lecho rocoso permiten capturar mejor la descarga de hielo para los glaciares en modelos de capa de hielo continental, y las simulaciones indican que la topografía del lecho rocoso controla la magnitud y la tasa de retroceso. En general, los glaciares que desembocan en los fiordos están controlados por la topografía del lecho rocoso, y hay poca confianza en la cuantificación de la futura pérdida de masa de Groenlandia provocada por el calentamiento de las condiciones oceánicas, debido a las limitaciones en la comprensión actual de las interacciones hielo-océano, su implementación en modelos de capas de hielo y conocimiento de la topografía del lecho rocoso.

Un desafío pendiente es la baja confianza en la reproducción histórica de cambios de masa de la capa de hielo de Groenlandia (Recuadro 1). Sin embargo, hay confianza media en los modelos de capa de hielo que reproducen el presente estado de la capa de hielo de Groenlandia, lo que lleva a una confianza media en la capacidad actual para proyectar con precisión su evolución futura. 

Proyecciones al 2100

Los cambios en el derretimiento superficial del hielo de Groenlandia o SMB contribuirán a elevar el nivel del mar en 2100 entre 3 y 16 cm con un valor promedio más probable de 7 cm. Según proyecciones de SMB obtenidas por dos modelos climáticos regionales y reconstrucciones basadas en conjuntos de temperatura. Este valor puede verse incrementado hasta 6 cm en simulaciones de modelos climáticos regionales en las que se atribuye una mayor amplificación ártica y retroalimentaciones de nubes y hielo marino asociadas que en otras simulaciones.

La contribución de Groenlandia al nivel futuro del mar (Tabla 1) muestra una contribución probable de 7 cm (entre 0 y 11 cm) para estimaciones bajas y de 14 cm (entre 8 y 27 cm) según estimaciones altas. Nuevas proyecciones para el siglo XXI han incluido el comportamiento del manto de hielo dinámico acoplado ESM a modelos atmosféricos regionales (Tabla 1). El modelo  acoplado ESM de capa de hielo proyecta un aumento del nivel del mar de 10,9 cm hacia 2100 respecto al nivel del  mar de 2015 y una contribución similar  bajo un escenario idealizado de un aumento de un 1% por año en las emisiones de CO2. Las simulaciones incluyen Interacciones entre la capa de hielo y la atmósfera y el agua de deshielo en la superficie de la capa de hielo encaminado al océano. El modelo atmosférico regional acoplado y modelo de capa de hielo proyecta un aumento del nivel del mar de 7,9 cm en 2100 en relación con el año 2000.

Un ESM de menor complejidad acoplado a un modelo de capa de hielo da una contribución del nivel del mar de 2,5 a 6,4 cm  y 5,6 a 12 cm  (el rango se debe a cuatro simulaciones con diferentes conjuntos de parámetros para el modelo de atmósfera) identifican una simulación con un conjunto de parámetros más probables que proyectan entre 3,4 y 7,3 cm según diferentes escenarios. 

Es posible que la respuesta dinámica esté subestimada. Las proyecciones multimodelo se corrigen con una evaluación de la respuesta dinámica histórica al clima anterior a 2015 forzamiento (Recuadro 1). Para el período 2015–2100, se proyectan contribuciones al nivel del mar que van desde 1 a 5 cm. La mayor pérdida de masa se atribuye a una mayor disminución en SMB debido a la alta sensibilidad climática de los modelos utilizados. Las proyecciones fueron corregidas con la tendencia histórica. En segundo lugar, un emulador de las proyecciones está forzado por las distribuciones de temperatura del aire en la superficie para cada modelo a partir de un emulador de balance energético de dos capas y luego corregido con la tendencia histórica. Estos dos enfoques resultan en proyecciones que son similares en sus valores medianos y proyecciones pero difieren en su rango. Resultados similares se obtienen cuando se aplica el ajuste paramétrico. Groenlandia podría contribuir con hasta 33 cm al aumento del nivel del mar en 2100 en relación con 2000. Se señaló que el potencial alto en la contribución del nivel del mar en este estudio podría deberse a la suposición de calentamiento espacialmente uniforme, que puede sobrestimar tasa de derretimiento superficial, Sin embargo, también refleja la profunda incertidumbre que rodea el forzamiento atmosférico, procesos superficiales, fusión submarina, ruptura y dinámica del hielo. Se atribuye un 40% de dispersión del conjunto de modelos múltiples a la incertidumbre del modelo de la capa de hielo, 40% de incertidumbre del modelo climático y 20% de incertidumbre al forzamiento oceánico.

 

La capa de hielo de Groenlandia
Cuadro 1 Contribuciones del nivel del mar proyectadas,  en metros para la capa de hielo de Groenlandia para 2100 en relación con el periodo 1995-2014, Las cursivas denotan contribuciones parciales. La respuesta dinámica histórica  de las simulaciones ISMIP6 se estima en 0,19 ± 0,10 mm por año (0,02 m ± 0,01 m en 2100 en relación con 2015). 


Por tanto, existe una confianza media en que la pérdida de masa de la capa de hielo de Groenlandia está dominada por la incertidumbre en los escenarios climáticos y procesos superficiales, mientras que la incertidumbre en la fusión por ruptura frontal juega un papel menor.

Los procesos superficiales, en lugar del hielo descargado en el océano, dominarán la pérdida de hielo de Groenlandia durante el siglo XXI, independientemente del escenario de emisiones (alta confianza). Así lo confirman las proyecciones. La pérdida masiva proyectada de Groenlandia se debe predominantemente al aumento del agua de deshielo en la superficie y a la pérdida en capacidad de recongelamiento que da como resultado una disminución de SMB (nivel de confianza alto), concurrente con el aumento de las temperaturas y el oscurecimiento de la capa de hielo superficie  Los cambios de masa debidos a SMB y la dinámica de los glaciares de salida están vinculados, como la pérdida de masa por un proceso disminuye la pérdida de masa por el otro – por ejemplo, SMB elimina el hielo antes de que pueda llegar al glaciar marino término. Existe un grado de confianza medio de que la pérdida de masa a través del hielo de descarga disminuirá en el futuro, porque un aumento en la pérdida de masa (mediante el aumento de escorrentía superficial) conduce, en la mayoría de las áreas, a un retroceso del margen del glaciar hacia la tierra sobre el nivel del mar, aislando el capa de hielo de la influencia marina.

En resumen, es prácticamente seguro que la capa de hielo de Groenlandia continuará perdiendo masa este siglo bajo todos los diferentes escenarios de emisiones,  y una alta confianza en que la pérdida de masa total para 2100 aumentará con las emisiones acumuladas. La evaluación del nivel del mar está basada en proyecciones, lo que permite un enfoque más consistente a una gama más amplia de forzamientos climáticos y oceánicos. Es probable que la capa de hielo de Groenlandia contribuya entre 1 cm y 10 cm  con un nivel más probable de 6 cm para un escenario de bajas emisiones y entre 9 cm y 18 cm con un nivel más probable de 13 cm para un escenario de emisiones más alto para 2100 en relación con el periodo 1995–2014.

Existe un alto grado de confianza en que la pérdida de Groenlandia estará cada vez más dominada por el derretimiento de la superficie (SMB), ya que la respuesta dinámica de los glaciares forzada por el océano disminuirá a medida que los márgenes marinos se retiran a tierras más altas.

Proyecciones más allá de 2100

Las proyecciones del nivel del mar para 2300 son de 15 cm en escenarios de bajas emisiones y de 31 cm a 1.19 m en escenarios de  altas emisiones. Un nuevo estudio da una contribución del nivel del mar de 11 a 20 cm en escenarios de bajas emisiones  y de 61 cm a 1,29 m en escenarios de altas emisiones. Otras proyecciones de altas emisiones indican que Groenlandia podría contribuir entre 25 cm y 1,74 m. Se proyectan pérdidas en Groenlandia de 54 cm (entre 28 cm y 1,28 m) para un calentamiento de 2 °C y 97 cm ( entre 40 cm y 2,23 m) con un calentamiento de 5 °C. Estos estudios coinciden en que estas evaluaciones están en el extremo inferior del rango de proyecciones. Además, las observaciones sugieren que las pérdidas de la capa de hielo de Groenlandia están siguiendo el rango superior de las proyecciones. Por lo tanto, el rango probable para la contribución de la capa de hielo de Groenlandia al nivel medio mundial del nivel del mar (GMSL) hacia 2300 puede ser  de entre 11 y 25 cm o entre 31 cm y 1,74 m bajo diferentes escenarios. Sin embargo, dada la incertidumbre de los modelos climáticos utilizados para proyectar el cambio de la capa de hielo durante el siglo XXI y la amplia gama de simulaciones que se extienden más allá de 2100, solo hay  poca confianza en la contribución a GMSL para 2300 y más allá.

El papel de la retroalimentación elevación-masa para futuras proyecciones de Groenlandia se puede evaluar a partir de simulaciones paleolíticas.

La pérdida total de hielo de Groenlandia, contribuiría en unos 7 m al nivel del mar, durante un milenio o más ocurriría para una temperatura superficial media global sostenida (GMST) entre 1 °C (confianza baja) y 4 °C (confianza media) por encima de los niveles preindustriales. Nuevos estudios confirman esta evaluación y  estiman que una pérdida completa podría suceder en alrededor de 8000 años a 5,5°C y en unos 3000 años a 8,6°C. Basado en la concordancia entre estudios nuevos y previos, por lo tanto, existe una alta confianza en que la tasa a la cual el comportamiento de la capa de hielo de Groenlandia depende de la cantidad de calentamiento.

Se ha encontrado un umbral de pérdida de hielo irreversible vinculada al tamaño de la capa de hielo. Si la capa de hielo pierde una masa equivalente a unos 3-3,5 m de aumento del nivel del mar, no volvería a crecer a su estado actual, y con 2 m de aumento del nivel del mar sería irreversible. El momento en el que la  capa de hielo podría alcanzar este volumen crítico depende de las condiciones oceánicas y  atmosféricas, la dinámica del hielo y la retroalimentación clima-capa de hielo. Por lo tanto, las proyecciones difieren en  magnitud y tasa de cambio de temperatura para cruzar el umbral de pérdida irreversible. Proyecciones de conjunto indican que el umbral de masa puede alcanzarse en tan solo 400 años si el calentamiento alcanza 10°C o más por encima del presente. En resumen, hay una confianza alta en la existencia de un umbral de comportamiento de la capa de hielo de Groenlandia en  un clima más cálido; sin embargo, hay poco acuerdo sobre la naturaleza de los umbrales y los puntos de inflexión asociados. 

Resumen

Está claro que Groenlandia está perdiendo hielo a un ritmo cada vez mayor, sobre todo debido a procesos de derretimiento de la capa superficial. (5000 km cúbicos entre 1992 y 2020). Existen incertidumbres de la velocidad de pérdida y de su contribución al aumento del nivel del mar en función de los diferentes modelos empleados y de los diferentes escenarios de emisiones futuras, pero es claro la contribución de la masa total de hielo sería en torno a 7 m lo cual tardaría miles de años en suceder con altos niveles de calentamiento. Dentro de nuestro siglo podemos esperar elevaciones de centímetros y derretimientos más moderados.


sábado, 6 de mayo de 2023

Fusión en el glaciar Thwaites

Después de publicar los dos artículos traducidos, tal y como prometí, publico aquí un resumen (espero que menos árido) de ambos artículos. 

En la semana del 15 de febrero de 2023 se publicaron en la revista Nature dos artículos sobre la región antártica del glaciar Thwaites, que brindan una imagen más clara de los cambios que tienen lugar bajo dicho  glaciar, que abarca un área del tamaño de Gran Bretaña o el estado estadounidense de Florida. Los resultados muestran que, aunque el derretimiento ha aumentado debajo de la plataforma de hielo flotante, la tasa actual de derretimiento es más lenta de lo que estiman actualmente muchos modelos informáticos. A pesar de una fusión más lenta, todavía hay un retroceso rápido del glaciar, por lo que parece que no se necesita mucho para desequilibrar el glaciar. El glaciar Thwaites es tan importante que tiene hasta su propia página web.

Aquí las traducciones más fieles a los originales y los enlaces sus respectivos artículos originales:

Heterogeneous melting near the Thwaites Glacier grounding line

Fusión basal suprimida en la zona Este de la línea de tierra del glaciar Thwaites

Introducción

El glaciar Thwaites es uno de los sistemas hielo-océano que cambia más rápidamente en la Antártida. Gran parte de la capa de hielo dentro de la cuenca del glaciar Thwaites se encuentra por debajo del nivel del mar sobre un lecho rocoso que se profundiza tierra adentro, haciéndolo susceptible a una pérdida de hielo rápida e irreversible que podría elevar el nivel global del mar en más de medio metro (65 cm para ser exactos) en los próximos siglos. La tasa y el alcance de la pérdida de hielo está determinada por las condiciones oceánicas y basales, ambas en gran parte desconocidas, dentro de la región de la zona de puesta a tierra  donde el glaciar Thwaites sale a flote al mar abierto. 

Contexto del glaciar Thwaites
Figura 1. Aquí se muestra una comparación del tamaño del glaciar Thwaites.

El rápido retroceso del glaciar Thwaites en la Antártida Occidental parece ser impulsado por diferentes procesos bajo su plataforma de hielo flotante. Nuevas observaciones desde donde el hielo ingresa al océano muestran que, si bien la fusión bajo  gran parte de la plataforma de hielo es más débil de lo esperado, el derretimiento en grietas y hendiduras es mucho más rápido. El glaciar está en retirada, y estos hallazgos dan un importante paso adelante para comprender la contribución del glaciar al futuro aumento del nivel del mar.

Visión general

Las condiciones atmosféricas y oceánicas en alta mar fuerzan el calentamiento  de las aguas profundas circumpolares  en la plataforma continental del Mar de Amundsen, donde contribuyen a la pérdida de hielo y al retroceso de la línea de tierra de los glaciares que drenan este sector de la capa de hielo de la Antártida occidental, incluido el glaciar Thwaites. 

El glaciar Thwaites se extiende hacia el mar desde la costa de Walgreen, formando la lengua glaciar de Thwaites y una plataforma de hielo marino flotante que descansa sobre un punto de anclaje saliente del fondo marino (línea de tierra). Una corriente circumpolar relativamente cálida de aguas profundas fluye hacia el glaciar a lo largo de la costa y a través de canales bajo el lecho marino, impulsando la fusión del hielo submarino en contacto con el agua del mar. El lecho debajo del hielo se profundiza hasta un máximo de 2.300 m bajo el nivel del mar, haciéndolo susceptible a una retirada a gran escala debida  a la fusión del hielo impulsado por el agua oceánica más cálida (por encima del punto de congelación).

 

Fusión en el glaciar Thwaites
Figura 2 Situación geográfica de la posición y área ocupadas por los glaciares Thwaites y Pine Island. La escala de colores representa la velocidad de desplazamiento del hielo en metros por año.


Los cambios en el sistema Thwaites se han acelerado en los pasados 20 años, lo que resulta en la ruptura de la lengua del glaciar y la propagación de grietas en sobre su plataforma de hielo. La retirada reciente de su línea de tierra ha pasado de retroceder unos 600 m al año a retroceder cerca de 1,2 km al año. Un derretimiento propiciado por aguas oceánicas más templadas junto con un adelgazamiento dinámico provoca que las tasas de flujo de hielo influyan en esta retirada, pero saber exactamente cómo operan estos factores es difícil por la limitación de observaciones generalmente pobres debajo del hielo. 

Las observaciones satelitales, que miden la elevación de la superficie del glaciar, sugieren que la plataforma de hielo está adelgazando en promedio 25 metros por década, Considerando que el radar aerotransportado de penetración de hielo mide el espesor del hielo estima tasas de hasta 45 metros por década en algunas partes. El hielo en esta región está anclado a unos 500 m bajo el nivel del mar, típico de la mayor parte del sistema Thwaites fuera del tronco occidental.

Se taladró un pozo de 600 m de profundidad a unos dos kilómetros de la línea de puesta a tierra  de la plataforma de hielo oriental del glaciar Thwaites, zona caracterizada por agua cálida y altamente estable con temperaturas sustancialmente superiores al punto de congelación. A pesar de estas condiciones cálidas, las bajas velocidades de la corriente y la fuerte estratificación de densidad en la capa límite hielo-océano restringen activamente la mezcla vertical de calor hacia la base de hielo, lo que da como resultado una fusión basal de hielo fuertemente suprimida. El modelo utilizado de fusión de la plataforma de hielo para generar proyecciones del nivel del mar no puede reproducir las tasas de fusión observadas debajo este glaciar. A pesar de su rápido retroceso y su inestable  línea de puesta a tierra, mantiene tasas de fusión basal relativamente modestas.

Una capa de agua más fría entre el fondo de la plataforma de hielo y el océano subyacente reduce la tasa de fusión a lo largo de las partes planas de la plataforma de hielo. Pero el derretimiento a formado una topografía en forma de gradas en la parte inferior de la plataforma de hielo. En estas áreas, así como en las grietas en el hielo, este se está derritiendo rápidamente. 

La zona de conexión a tierra, el punto donde se encuentra con el fondo marino, se ha retirado 14 km desde finales de la década de 1990. Estas medidas se han comparado con las observaciones de la tasa de fusión tomadas en otros cinco sitios debajo de la plataforma de hielo durante un período de nueve meses, cerca de la línea de puesta a tierra. El océano subyacente se volvió más cálido y salado, pero la tasa de derretimiento en la base del hielo promedió entre 2 y 5 m por año: menos que lo predicho por el modelo anterior.

Se desplegó un vehículo submarino no tripulado a través del pozo. El vehículo está diseñado para acceder a esas zonas de conexión a tierra que antes eran casi imposibles de inspeccionar. Las observaciones que hizo el vehículo del lecho marino y el hielo alrededor de la zona de conexión a tierra brindan más detalles sobre la imagen de cómo varía la fusión bajo la plataforma de hielo. Las zonas escalonadas, llamadas terrazas, así como las grietas en la base de hielo se están derritiendo rápidamente. El derretimiento es especialmente importante en las grietas: a medida que el agua se canaliza a través de ellas, el calor y la sal pueden transferirse al hielo, ensanchando estas.

Aunque el derretimiento vertical a lo largo de la base de la plataforma de hielo es menor de lo esperado, la fusión a lo largo del hielo inclinado en estas grietas y terrazas es mucho mayor y puede ser un factor importante en la pérdida de hielo en el glaciar Thwaites, especialmente a medida que las principales grietas avanzan a lo largo del glaciar, la plataforma de hielo y puede convertirse en el desencadenante principal del colapso de la plataforma de hielo.

Los modelos informáticos muestran que durante las próximas décadas, el glaciar puede perder hielo rápidamente, a medida que el hielo retrocede. El hielo que se drena desde Thwaites hacia el mar de Amundsen ya representa alrededor del cuatro por ciento del aumento global del nivel del mar. 

El glaciar Thwaites representa el 15% de la descarga de hielo de la capa de hielo antártico occidental e influye en una cuenca más amplia. Al introducirse el hielo bajo el nivel del mar, se cree que el glaciar Thwaites es susceptible a un retroceso desbocado desencadenado en su línea de puesta a tierra en la que el glaciar llega al océano. Una reciente aceleración del flujo de hielo y retroceso del frente de hielo y su línea de indican que la pérdida de hielo puede continuar. 

Superficie del glaciar Thwaites
La tasa de pérdida de masa de la plataforma de hielo ha aumentado en un 70% entre 1994 y 2012, precipitando un cambio hacia un drenaje más rápido de hielo en el océano. La respuesta de la capa de hielo de la Antártida occidental con base marina a un clima más cálido contribuye con una incertidumbre sustancial a las proyecciones del nivel del mar del siglo XIX. La evolución de la capa de hielo está dinámicamente vinculada al destino de las plataformas de hielo flotantes que se encuentran sobre el mar. Ejerciendo una fuerza resistiva en la línea de puesta a tierra donde la capa de hielo primero sale a flote, el refuerzo de la plataforma de hielo ayuda a controlar el flujo de hielo sobre tierra hacia el océano. En las últimas décadas, el elevado derretimiento basal impulsado por el océano ha provocado un rápido adelgazamiento de muchas plataformas de hielo antárticas, lo que reduce la resistencia de los contrafuertes de las plataformas de hielo.

Condiciones bajo la plataforma de hielo 

El agua templada ocupa gran parte del volumen oceánico bajo la plataforma de hielo, con temperaturas del océano 2,25 °C por encima del punto de congelación, disminuyendo solo ligeramente a 2 °C a unos 5 a 10 m de la base del hielo y a 400 m de la línea de tierra.

Un kilómetro aguas abajo de la línea de tierra, la superficie del hielo es muy rugosa, aproximadamente el 30% consiste en grandes fisuras. Se observó un derretimiento visible en toda la región. Aparecen pequeñas terrazas talladas en el hielo dentro de los 200 m de la línea de tierra, lo que indica que el derretimiento erosiona rápidamente estas caras inclinadas de hielo. 

Se observa fusión turbulenta impulsada por el océano. También se observan terrazas en grietas Por el contrario, el hielo aguas abajo bajo de la plataforma extremadamente plano, con pendientes superficiales menores a 5º.

Interacciones hielo-océano

En toda la región, se observa agua a  1,75 °C a una distancia de 1 m de la base de hielo, proporcionando suficiente calor para impulsar el derretimiento. 

 Aunque los datos más cercanos al hielo reflejan un aumento en la fusión. Las observaciones muestran una fuerte estratificación vertical el agua de fusión de origen terrestre formado a partir de fusión del hielo sobre tierra, cae al mar y forma una capa de agua fría justo bajo la base del hielo. Las corrientes oceánicas se debilitan a menos de 5 m del hielo desde una velocidad de fondo cercana a 3 cm por segundo a casi cero cerca de la interfaz hielo-océano. 

Por el contrario, las corrientes aumentan en las grietas hasta un máximo medido de 5,90 cm por segundo. Se han calculado de fusión ascendentes promedio de 5 m por año, pero el derretimiento en la región es muy variable.

 

Tasa de derretimiento de la plataforma de hielo del glaciar Thwaites

Figura 3 La tasa de derretimiento de la plataforma de hielo depende en gran medida de la pendiente, las pendientes pronunciadas contribuyen hasta el 27% de la pérdida de hielo bajo la plataforma de hielo a lo largo de solo el 9% del hielo base. 

a, Las tasas de derretimiento de la plataforma de hielo espacialmente variables muestran la fuerte influencia de la pendiente local. Cada curva mostrada consta de puntos de datos de velocidad de fusión que se han calculado utilizando el promedio regional de las condiciones oceánicas.

 b, La fusión lateral a lo largo pendientes superiores a 30° se estima que contribuye en un 27% a la fusión bajo la plataforma de hielo, mientras que estas pendientes representan solo el 9% de la plataforma de hielo. La fusión hacia arriba a lo largo de pendientes bajas sigue siendo la fuente más notable de fusión, en la que las pendientes de menos de 30° representan el 73% del derretimiento, mientras que representan el 91% del hielo. 

La estratificación suprime la fusión a lo largo de interfaces planas, mientras que las tasas de fusión estimadas a lo largo de las caras verticales se acercan a los 30 m por año en promedio. La fusión es más fuerte a lo largo de las paredes casi verticales de las grietas, en las que el agua está 1,8 °C por encima del punto de congelación.  Estas observaciones implican tasas de fusión a lo largo de las paredes laterales de las grietas de hasta 43 m por año.

Las interacciones hielo-océano bajo la plataforma de hielo son influenciadas incluso por la topografía del hielo a pequeña escala, que se extendería a otras plataformas de hielo de base cálida en las que corrientes de velocidades bajas a moderadas permiten que persistan altos niveles de estratificación oceánica cercana al hielo. Se calcula un derretimiento ascendente promedio moderado a lo largo de superficies planas en 5 m al año, que coincide con las tasas de fusión medidas en interfaces similares y son consistentes con las estimaciones históricas del radar de penetración de hielo. 

Más cercano a la línea de tierra, las tasas de fusión promedian 2 m al año con un  rango de 1 a 10 m al año. Las observaciones muestran que la retroalimentación entre la pendiente del hielo y el derretimiento es relevante para toda la base de plataformas de hielo, incluso cerca de la línea de base.

Es decir, la fusión promueve la formación de grietas y superficies inclinadas y estas a su vez son más susceptibles de ser fusionadas que las superficies planas. En la región estudiada, el 27% del derretimiento total ocurre a lo largo de las laderas que son mayores de 30°. Porque las grietas canalizan el agua a través ellas a velocidades que pueden transferir eficientemente el calor y la sal a las paredes empinadas de las grietas, estas tasas de fusión localmente altas deberían ensanchar tanto grietas y fisuras basales a través del glaciar, y contribuir al aumento del desprendimiento del glaciar. 

Conclusión

Hay que tener en cuenta que aunque la fusión bajo la plataforma de hielo sea reducida, es crítico que la fusión en las grietas sea tan alta, pues tiende a forzar el desprendimiento de grandes bloques de hielo. Es decir, el verdadero peligro no es a qué velocidad puede fundirse el hielo, sino el hecho de que al estar sobre el océano puede partirse y desprenderse con facilidad sin necesidad de fundirse. El hecho de que esté sobre el océano puede dar lugar al equívoco de que no influye sobre el nivel de este, una vez la plataforma se desprende y se aleja, su lugar es ocupado por hielo nuevo procedente de tierra con lo que si contribuye al aumento del nivel del mar, además al no existir el freno de la vieja plataforma, el flujo de hielo hacia el océano se acelera, con lo que el volumen de hielo entrante en el mar se multiplica.

 

Esquema de procesos de fusión en el glaciar Thwaites
Figura 4. Aunque la fusión bajo la plataforma es moderada (2-5 m por año) hay tres grandes peligros: 1º la fusión en las grietas alcanza los 30 m por año, lo que puede ampliar las grietas y desprender grandes porciones de la plataforma de hielo. (Ver recuadro ampliado) un hecho agravante de esta situación, es que dichas grietas se encuentran próximas a la línea de tierra. 2º. Una fusión moderada puede permitir la penetración de agua oceánica bajo la línea de tierra y sacar literalmente “a flote” una gran porción del glaciar que ahora está asentado sobre tierra. Esto podría implicar una subida “brusca” del nivel del mar. 3º La plataforma de hielo y la línea de tierra ejercen de frenos para el hielo que está aguas arriba, si estas desaparecen, dicho hielo podría precipitarse bruscamente hacia el océano.

Por otra parte, la plataforma tiene cientos de metros de grosor 500-600 m pero sus tasas de fusión reducida de 2 a 5 m anuales nos dan una vida estimada máxima de la plataforma de 100 a 300 años sin tener en cuenta los grandes bloques de hielo que pueden desprenderse mucho más prematuramente.

Donde está y como es el glaciar Thwaites
Figura 5. En esta imagen bastante inquietante, se puede ver que la totalidad del lecho glaciar se encuentra bajo el nivel del mar. Lo que puede provocar un colapso súbito del glaciar.



sábado, 29 de abril de 2023

Nieve en la sierra de Guadarrama (temporada 2022-2023)

En el año 2013 publiqué el post de la nieve de la temporada el 26 de agosto este año lo publico en abril por que la temporada terminó en abril por primera vez desde que registro la nieve vista desde Madrid a simple vista.

Esta temporada se registró la primera nevada el 18 de noviembre de 2022 fecha un poco tardía pero dentro de lo normal, 

Sierra de Guadarrama 20-11-2022 dos días después de la primera nevada.
Sierra de Guadarrama 20-11-2022 dos días después de la primera nevada. (https://aventurate.com/webcam/)

aunque hubo pequeñas nevadas esporádicas, no la vimos plenamente nevada hasta el 20 de enero de 2023.  

 

Sierra de Guadarrama 12-1-2023 completamente sin nieve en pleno mes de enero una vista insólita
Sierra de Guadarrama 12-1-2023 completamente sin nieve en pleno mes de enero una vista insólita. (https://aventurate.com/webcam/)

Sierra de Guadarrama 21-1-2023 después de la única nevada importante de toda la temporada
Sierra de Guadarrama 21-1-2023 después de la única nevada importante de toda la temporada (otro hecho insólito). (https://aventurate.com/webcam/)

A pesar de una nieve tan escasa y tardía, la temporada de esquí fue excepcionalmente buena (para lo que es la sierra de Guadarrama actualmente) pues después hizo frío y la nieve aguantó todo febrero con otra pequeña nevada y buena parte de marzo.

 

Sierra de Guadarrama 28-2-2023
Sierra de Guadarrama 28-2-2023 más de un mes después de la única nevada importante de toda la temporada gracias al frío aguanta bien. (https://aventurate.com/webcam/)

Ha sido prácticamente la primera temporada con una sola y única nevada, pues de las 4 o 5 nevadas reseñables de esta temporada sólo la de enero acumuló nieve para formar neveros y permitir el esquí, el resto de nevadas fueron prácticamente “enfarinadas” que se van en menos de una semana.

 

Sierra de Guadarrama 30-3-2023 aspecto lamentable al comienzo de la primavera
Sierra de Guadarrama 30-3-2023 aspecto lamentable al comienzo de la primavera. Similar al de otros años en junio o julio. (https://aventurate.com/webcam/)

sierra de Guadarrama el 6-6-2016

Compárese el aspecto de la sierra de Guadarrama el 6-6-2016 con un aspecto similar al que tuvo en 2023 en marzo. (https://aventurate.com/webcam/)

Esta temporada no hemos tenido acumulaciones en las cornisas de Peñalara ni en el ventisquero de la Condesa  por lo que la última nieve observada a simple vista desde Madrid ha sido el 25 de abril, 6 días antes del anterior récord del  1 de mayo de 2020


 

Sierra de Guadarrama 25-4-2023 último día con nieve
Sierra de Guadarrama 25-4-2023 último día con nieve observada en el ventisquero de la Condesa (fuera del encuadre) (https://aventurate.com/webcam/)

Compárese el aspecto de la sierra de Guadarrama el 21-6-2013 el año que más nieve se registró en la sierra de Guadarrama desde que hay registros (modernos)  (https://aventurate.com/webcam/)

Dias de nieve en la sierra de Guadarrama desde el 1 de mayo
Número de días con nieve posteriores al 1 de mayo en la sierra de Guadarrama

Ya advertía en el último párrafo de la temporada 2019-2020, que aunque en las gráficas no se apreciaban tendencias, eso era debido a que se veía nieve pero cada vez con menos grosor y cuando se llegase a un punto de inflexión (grosor prácticamente cero) entonces veríamos un cambio brusco en las gráficas, y eso es lo que ha sucedido este año. Finalmente hemos tenido 7 días de nieve (anterior al 1 de diciembre y posterior al 1 de mayo) por primera vez tenemos un numero negativo (-5) que representa que la nieve desapareció 5 días antes del 1 de mayo. Por tanto: 12 días de nieve en noviembre – 5 son 7 días en nuestra gráfica. 

 

Número de días con nieve en la sierra de Guadarrama
Número de días con nieve anteriores al 1 de diciembre y posteriores al 1 de mayo en la sierra de Guadarrama

Normalmente no se cuentan los días de diciembre a abril dando por hecho que la sierra está permanentemente nevada, pero incluso este año habría que descontar muchos días de diciembre y enero hasta la nevada que por fin acumuló nieve.

Así que en la gráfica de media ponderada a 10 años que no se veía tendencia, ahora ya aparece una tendencia bastante clara y bastante brusca.

 

Número de días ponderados a 10 años con nieve anteriores al 1 de diciembre y posteriores al 1 de mayo en la sierra de Guadarrama

Número de días con nieve ponderados a 10 años, anteriores al 1 de diciembre y posteriores al 1 de mayo en la sierra de Guadarrama

Como se puede ver desde 2018 se produce una caída en picado hasta 2022/23 con valores medios por debajo de 75.

Esta vez añado dos gráficas más, teniendo en cuenta los días totales con nieve (pues por primera vez hay que descontar 41 días sin nieve en la temporada 2019-2020 pues nevó el 2 de octubre pero luego no hubo más nieve hasta finales de noviembre y 35 días esta temporada por las mismas razones)

Siempre he sido fiel a los datos y siempre he dicho que no había tendencia, pero esta vez los datos son claros, si hay tendencia y es a la baja y además de forma bastante abrupta, lo que me hace pensar en un post que publiqué hace tiempo sobre la posibilidad de un cambio climático brusco

 

Número total de días con nieve en la sierra de Guadarrama
Número total de días con nieve en la sierra de Guadarrama

En la gráfica superior se puede ya apreciar claramente una tendencia, pero donde mejor se ve, es precisamente en la gráfica inferior que supuestamente al ser ponderada a 10 años debería “limar” los datos y borrar tendencias, pero hace todo lo contrario. La tendencia es clara.

 

Número total de días ponderados a 10 años con nieve en la sierra de Guadarrama
Número total de días ponderados a 10 años con nieve en la sierra de Guadarrama


Finalmente dejo un vídeo de toda la temporada y la tabla con todas las observaciones de la nieve vista desde Madrid y alrededores a simple vista.

         Vídeo sobre toda la temporada de nieve en la sierra de Guadarrama


Primera y última nieve vistas a simple vista desde Madrid y alrededores 1985-2023
Primera y última nieve vistas a simple vista desde Madrid y alrededores 1985-2023

sábado, 8 de abril de 2023

Fusión basal suprimida en la zona Este de la línea de tierra del glaciar Thwaites

Peter E. D. Davis , Keith W. Nicholls, David M. Holland, Britney E. Schmidt,Peter Washam, Kiya L. Riverman, Robert J. Arthern, Irena Vaňková, Clare Eayrs, James A. Smith, Paul G. D. Anker, Andrew D. Mullen, Daniel Dichek, Justin D. Lawrence,Matthew M. Meister, Elisabeth Clyne, Aurora Basinski-Ferris, Eric Rignot,Bastien Y. Queste, Lars Boehme, Karen J. Heywood, Sridhar nandakrishnan &Keith Makinson

https://doi.org/10.1038/s41586-022-05586-0

Igual que el artículo del mes pasadoeste artículo puede ser bastante árido para los profanos pues está casi traducido literalmente del original. El próximo mes pondré un resumen más digerido de este artículo y el del mes pasado.

Introducción 

El glaciar Thwaites es uno de los sistemas de hielo y océano que cambia más rápidamente en la Antártida. Gran parte de la capa de hielo dentro de la cuenca del glaciar Thwaites se encuentra por debajo del nivel del mar sobre un lecho rocoso que se profundiza tierra adentro, haciéndolo susceptible a una pérdida de hielo rápida e irreversible que podría elevar el nivel global del mar en más de medio metro. La tasa y el alcance de la pérdida de hielo, y si procede de manera irreversible, está determinada por las condiciones oceánicas y basales ambas en gran parte desconocidas, dentro de la región de la zona de puesta a tierra donde el glaciar Thwaites sale a flote por vez primera. 

Aquí se muestran las  observaciones realizadas en un pozo perforado cerca de  la zona de puesta a tierra de la plataforma de hielo oriental de Thwaites (TEIS) zona, caracterizada por una columna de agua cálida y altamente estable con temperaturas sustancialmente superiores al punto de congelación in situ. A pesar de estas condiciones cálidas, las bajas velocidades de la corriente y la fuerte estratificación de densidad en la capa límite hielo-océano restringen activamente la mezcla vertical de calor hacia la base de hielo, lo que da como resultado una fusión basal de hielo fuertemente suprimida. El modelo canónico de fusión basal de la plataforma de hielo utilizado para generar proyecciones del nivel del mar no puede reproducir las tasas de fusión observadas debajo este glaciar de importancia crítica, y el retroceso rápido y posiblemente inestable de la línea de puesta a tierra, puede estar asociado con tasas de fusión basal relativamente modestas.

Descripción del proyecto

La respuesta de la capa de hielo de la Antártida occidental (WAIS) con base marina a un clima más cálido contribuye con una incertidumbre sustancial a las proyecciones del nivel del mar del siglo XIX. La evolución de la capa de hielo está dinámicamente vinculada al destino de las plataformas de hielo flotantes que se encuentran sobre el mar. Ejerciendo una fuerza resistiva en la línea de puesta a tierra donde la capa de hielo primero sale a flote, el refuerzo de la plataforma de hielo ayuda a controlar el  flujo de hielo sobre tierra hacia el océano. En las últimas décadas, el elevado derretimiento basal impulsado por el océano ha provocado un rápido adelgazamiento de muchas plataformas de hielo antárticas, lo que reduce la resistencia de los contrafuertes de las plataformas de hielo.

La tasa de pérdida de masa de la plataforma de hielo ha aumentado en un 70% entre 1994 y 2012, precipitando un cambio hacia un drenaje más rápido de hielo en el océano. Varias líneas principales de puesta a tierra en el sector marítimo de Amundsen se han retirado rápidamente hacia el interior, lo que plantea la posibilidad de una inestabilidad y colapso del WAIS.

En ninguna parte estos procesos son más evidentes y potencialmente graves que en el glaciar Thwaites, que drena alrededor del 10% del WAIS(Fig. 1). Thwaites está anclado en gran medida bajo el nivel del mar en un lecho retrógrado (es decir, un lecho que se profundiza tierra adentro) y es particularmente susceptible a las inestabilidades de la capa de hielo. Su línea de puesta a tierra se ha retirado 14 km desde fines de la década de 1990 y, en algunas regiones, está retrocediendo hasta 1,2 km por año en la actualidad. Es posible que Thwaites ya haya entrado en un estado de pérdida rápida e irreversible de hielo, y su colapso completo en siglos contribuiría con 65 cm al nivel global del mar. Una desestabilización total de los principales glaciares del sector del Mar de Amundsen contribuiría con 3 m al nivel global del mar en los próximos miles de años. La tasa y el alcance de pérdida de hielo del glaciar Thwaites, y si procede irreversiblemente, es altamente sensible a las condiciones oceánicas poco conocidas y a la velocidad basal de fusión en la región de la zona de puesta a tierra en constante evolución.

Se perforó un orificio a través de 587 m de hielo aproximadamente 1,5-2,0 km aguas abajo de la línea de puesta a tierra actual (Fig. 1) en la 'mariposa' relativamente accesible región del TEIS.  Se usó un perfilador de profundidad (CTD) para muestrear la estructura hidrográfica de la columna de agua de 54 m de profundidad, su conductividad y temperatura, mientras que un vehículo submarino llamado Icefin operado remotamente midió la variabilidad espacial en las condiciones del océano hasta la línea de puesta a tierra. Las tasas de fusión basal a largo plazo en cinco diferentes sitios (Fig. 1).

Fusión basal suprimida en la zona Este de la línea de tierra del glaciar Thwaites

Figura 1  Mapa del glaciar Thwaites y ubicación de las observaciones utilizadas en este estudio. 

a, imagen satelital Landsat 8 del glaciar Thwaites y la ubicación del orificio de acceso perforado con agua caliente (estrella amarilla; 75,207° S, 104,825° W) en el región de "mariposa" de la zona de conexión a tierra de TEIS (mapa recuadro). Contornos de color azul con sombreado muestran la profundidad del lecho en el mar de Amundsen a partir de un estudio realizado desde un barco. Los puntos lila, verde y naranja muestran la ubicación de Perfiles de CTD basados en barcos de 2019-2020 del proyecto glaciar internacional Thwaites. La línea de costa (negra) y la línea de puesta a tierra (púrpura). El mapa inserto muestra el detalle de la región de “mariposa” de la zona de puesta a tierra. Los contornos de color verde-marrón con sombreado muestran la profundidad del lecho. El área azul muestra la ubicación de la región de la zona de conexión a tierra de 2016-201, mientras que las líneas sólidas negras y grises muestran la posición de la línea de puesta a tierra en 2019 y 2021, respectivamente. Los diamantes verdes, morados, naranjas y amarillos muestran la ubicación de los instrumentos que miden la tasa de fusión basal. El rojo (T1) y las líneas naranja (T2) muestran los transectos tomados por el vehículo Icefin. 

b, Descripción general de la con la ubicación del glaciar Thwaites mostrada en un recuadro rojo. Las líneas negras delgadas delimitan las cuencas principales cuencas de drenaje de la capa de hielo, con la Cuenca de drenaje de Thwaites resaltada en azul. 

Estructura de la columna de agua e hidrografía

La zona de encalladura se caracteriza por aguas cálidas y saladas en profundidad, con agua más fría en la base del hielo (Fig. 2a). La conducción térmica  cerca de la interfaz hielo-océano (un parámetro clave para controlar el derretimiento basal) alcanza 1.54 °C, similar a la observada debajo de la plataforma de hielo de Pine Island. Una capa límite basal altamente estratificada en salinidad se ve dentro de los 2 m del límite hielo-océano, donde el fuerte gradiente en salinidad absoluta (SA) crea una fuerte barrera para la mezcla vertical (Datos extendidos Figura 1a). Aunque la densidad en las regiones polares está determinada por la salinidad y, por lo tanto, la columna de agua de la zona de conexión a tierra está estratificada de manera estable (Fig. 2c), El gradiente vertical de temperatura  (Θ) es inestable con respecto a la densidad (es decir, el agua fría se encuentra sobre el agua caliente) y la columna de agua puede ser susceptible a la convección difusiva. Aunque este proceso de doble difusión podría proporcionar una fuente limitada de energía para la mezcla vertical, con una relación de densidad promedio de solo 0.2 y un Ángulo de Turner de −57°, el gradiente de temperatura es demasiado débil para sostener una escala termohalina (Datos extendidos Fig. 1b). Bajo La variabilidad entre los valores de la CTD indica que los gradientes laterales de temperatura y salinidad son débiles.

La fusión basal es forzada por una masa de agua de una sola fuente: Agua profunda circumpolar modificada (mCDW). El CTD basado en pozos y el vehículo Icefin los datos se encuentran predominantemente en una línea recta en el espacio Θ–SA con un gradiente de 2,40 ± 0,01 °C (g kg−1)−1 (Fig. 2c). El gradiente es consistente con esto. Cuando el agua de deshielo glacial de la fusión basal es impulsada por el océano se mezcla con agua del mar de la zona. Las propiedades de la fuente mCDW pueden determinarse trazando la línea de mezcla del agua de deshielo hasta su intersección con la termoclina principal mCDW–Agua de invierno (WW) fuera de la cavidad de la plataforma de hielo (Fig. 2c). La fuente mCDW tiene un valor de Θ de 0,16 °C y un valor de SA de 34,62 g  por kg, con una densidad potencial de 1.027,66 kg por metro cúbico. La mCDW con tal densidad se encuentra a una profundidad de alrededor de 528 m fuera la cavidad de la plataforma de hielo. La mCDW que alimenta la zona de puesta a tierra probablemente se origina en la bahía de Pine Island; sin embargo, no se puede descartar una fuente más al norte de Thwaites (Fig. 1). La bien mezclada capa inferior, los datos de CTD cambian a una mezcla de agua de deshielo ligeramente más cálida línea (fuente de agua Θ = 0,18 °C; Fig. 2c, recuadro), lo que indica que la zona es alimentada por un mCDW ligeramente más cálido.

El agua de deshielo glacial juega un papel central en el control de la circulación oceánica alrededor de la Antártida. En el pozo, el agua de deshielo glacial es encontrada en toda la columna de agua, con una concentración superior a 10 ± 2 ml por litro en la base de hielo (Fig. 2b). La distribución del agua de deshielo indica que el agua del océano en todas las profundidades ha interactuado con la base de la plataforma de hielo, en consonancia con la estrecha columna de agua y la proximidad a la línea de tierra. En la propia línea de puesta a tierra, la concentración de agua  glaciar deshielo observada por Icefin alcanza un valor máximo de aproximadamente 31 ml por litro (Fig. 2c). Esto está cerca del valor de saturación de aproximadamente 35 ml por litro, en cuyo punto Θ está en la congelación in situ y no puede ocurrir más fusión basal.

 

Hidrografía y contenido de agua de deshielo debajo de TEIS

Figura 2  Hidrografía y contenido de agua de deshielo debajo de TEIS. a, b, perfiles verticales de temperatura de conservación (Θ; rojo) y salinidad absoluta (SA; azul) (a) contenido de agua de deshielo glacial (gris) (b) recopilados durante 4 días (del 9 al 12 de enero 2020) en la región de la zona de puesta a tierra del glaciar Thwaites (estrella amarilla en la Fig. 1). La base del hielo está indicada por el cuadro gris sombreado y el lecho marino está indicado por la línea inclinada hacia atrás. 

c, diagrama Θ–SA con contornos σ0 (densidad) para el CTD de la zona de conexión a tierra y datos de Icefin (puntos grandes coloreados por profundidad) y datos (pequeños puntos coloreados por ubicación: naranja para Thwaites Trough, púrpura para la bahía de Pine Island y verde para aguas arriba que coincidan con los colores utilizados para indicar su ubicación en la Fig. 1). La línea negra sólida indica el ambiente Termoclina mCDW-WW. La línea naranja discontinua indica el agua de deshielo línea de mezcla que caracteriza los datos de la zona de puesta a tierra. El gran punto negro indica dónde esta línea de mezcla de agua de deshielo se cruza con la termoclina ambiental del mCDW–WW. Los guiones naranjas gruesos en la línea de mezcla de agua de deshielo indican Intervalos de 5 ml por litro en el contenido de agua de deshielo glacial, comenzando en 0 ml por litro en el punto negro grande. La línea negra discontinua indica la temperatura de congelación in situ en función de la salinidad en la línea de puesta a tierra. Las cajas rojas y azules con el contorno negro indican el rango de valores miembros finales de Θ y SA de mCDW y WW. Los ejes insertados en c muestran la relación Θ–SA coloreada por la profundidad (nótese la escala de color diferente) para los datos CTD del bentos bien mezclado capa límite (recuadro morado en el gráfico principal). La línea naranja discontinua indica la línea de mezcla de agua de deshielo ligeramente más cálida que caracteriza los datos de esta región de la columna de agua.

Variabilidad temporal de las condiciones oceánicas

Las condiciones del océano en el mar de Amundsen varían en una amplia gama de escalas de tiempo y afectan las propiedades del océano y la tasa de fusión basal debajo las plataformas de hielo marginales. Entre enero y septiembre de 2020, la zona de puesta a tierra se volvió más cálida y salada (Fig. 3a). En el espacio Θ–SA, las propiedades hidrográficas evolucionaron a lo largo de una trayectoria que se encuentra en un ángulo a la línea de mezcla de agua de deshielo desde el perfil CTD (Fig. 3d). Esta trayectoria solo puede explicarse por un cambio en la fuente de agua. Para septiembre de 2020, los valores de Θ y SA de la alimentación de mCDW de la zona de puesta a tierra aumentó a 0,43 °C y 34,69 g por kg, respectivamente, con una densidad potencial de 1.027,70 kg por metro cúbico. Una mCDW con esta densidad se encuentra a una profundidad de alrededor de 584 m fuera de la cavidad de la plataforma de hielo. La  profundidad del lecho marino y la pendiente del lecho rocoso prógrado en el pozo (Fig. 4a) evita que este mCDW más denso llegue a la zona de puesta a tierra directamente. En cambio, la termoclina mCDW-WW fuera de la plataforma de la cavidad de hielo debe haber  inundando la zona de puesta a tierra con cada vez más mCDW más cálida. La variabilidad a largo plazo en la profundidad de la termoclina está controlado en gran medida por tendencias que evolucionan lentamente en el forzamiento remoto del viento en la ruptura de la plataforma continental del Mar de Amundsen. Superpuesta a la tendencia al calentamiento son pulsos cortos de calentamiento y enfriamiento (por ejemplo, abril y junio de 2020; Fig. 3a), que probablemente son impulsadas por el viento local y el forzamiento del hielo marino que modifica la densidad y la temperatura del océano y genera remolinos y ondas internas que se propagan en la cavidad de la TEIS. Durante este período, la conducción térmica aumentó en 0,36 °C (Datos ampliados Fig. 2a), aunque una gran proporción se puede asociar con la distancia cada vez mayor entre el amarre del océano y la interfaz hielo-océano que resulta de la fusión basal.

Al mismo tiempo, la concentración de agua de deshielo glacial aumentó de aproximadamente 11,0 ml por litro a aproximadamente 13,4 ml por litro  (Fig. 3b). A partir de septiembre de 2020, la SA comienza a caer, mientras que Θ se mantiene constante a -0,2 °C (Fig. 3a). En el espacio Θ–SA, las propiedades hidrográficas evolucionan a lo largo de una trayectoria horizontal, que no puede explicarse por un cambio en masa de agua de origen (ya que las líneas de mezcla de agua de deshielo ya no se cruzan con la termoclina mCDW-WW). En cambio, esta trayectoria es indicativa de agua dulce procedente de la descarga subglaciar en la línea de puesta a tierra (Fig. 3b, d). Las aguas subglaciares debajo de Thwaites provienen del derretimiento basal de hielo puesto a tierra que resulta del flujo rápido de hielo y un gran estrés de cizalladura basal. Existe un sistema hidrológico persistente aguas arriba de Thwaites línea de conexión a tierra (Datos extendidos Fig. 3), junto con lagos subglaciares que exhiben eventos episódicos de drenaje y llenado. Este sistema hidrológico se reconfigura constantemente como resultado de cambios en el volumen de producción de agua de deshielo y la dinámica de los glaciares, y facilita un flujo de agua de deshielo hacia la línea de puesta a tierra en una red canalizada, donde se descarga en el punto de congelación dependiente de la presión (Datos extendidos Fig. 3). Aunque no se pueden explicar los mecanismos responsables para controlar los eventos de descarga, la evidencia sedimentaria indica que descarga subglaciar debajo de TEIS tiende a ocurrir en pulsos, consistente con el inicio repentino que observamos (Fig. 3b). Posibles mecanismos incluyen un cambio en la red de drenaje para favorecer la descarga debajo de TEIS o el inicio de un evento de drenaje de un lago subglaciar. La descarga subglaciar está vinculada a los cambios en la fricción basal y la velocidad de la corriente de hielo, y por lo tanto tiene el potencial de modular el flujo de hielo hacia el océano. Además, la entrada de agua dulce subglaciar impulsará una interacción compleja entre la mejora impulsada por la densidad en la circulación debajo de la plataforma de hielo que debería

 

Evolución temporal de las condiciones hidrográficas, contenido de agua de deshielo y tasa de fusión basal del glaciar Thwaites

Figura 3  Evolución temporal de las condiciones hidrográficas, contenido de agua de deshielo y tasa de fusión basal. 

a, Serie de tiempo promedio diario de temperatura conservadora (Θ; rojo) y salinidad absoluta (SA; azul) del amarre oceánico desplegado 1,5 m debajo de la base de hielo. 

b, agua de deshielo glaciar (gris) y escorrentía subglaciar (azul) derivada de las observaciones de Θ y SA. 

c, Tasa de fusión basal observada (líneas verde, violeta, amarilla y naranja) filtrado de paso bajo con un límite de 15 días trazado contra la tasa de fusión basal estimada a partir de la tasa de fusión de tres ecuaciones modelo (línea gris). Los colores de línea para la tasa de fusión basal,  las series de tiempo en c coinciden con sus ubicaciones en la Fig. 1. d, diagrama Θ–SA con contornos σ0 para los datos de la serie temporal en un color en función del tiempo. Las líneas de puntos azul y rojo son líneas de mezcla de agua de deshielo que se ajustan a los datos observados para enero 2020 (azul) y agosto de 2020 (rojo). La línea de puntos púrpura es una línea de mezcla entre los valores de la zona de puesta a tierra Θ y SA en agosto de 2020 y salida de agua subglaciar fría. La línea negra sólida indica la termoclina mCDW–WW ambiental de datos CTD (Fig. 2c), mientras que el cuadro sombreado en rojo indica el rango de valores de Θ y SA del extremo mCDW. Los puntos grises muestran los datos CTD de el pozo 

e, Vectores de velocidad del medidor de corriente debajo del hielo coloreados como función del tiempo. Los contornos radiales indican la velocidad del flujo en cm s por segundo.

impulsar una fusión basal más fuerte y fortalecer la estratificación de la capa límite eso debería suprimir la fusión basal. Las velocidades actuales de la base del hielo son clave para establecer las tasas de derretimiento basal. Las velocidades de flujo son débiles, con un promedio de 2,4 cm por segundo (Fig. 4a, b y Datos extendidos Fig. 4a). La variabilidad de las mareas es limitada y está dominada por las corrientes diurnas constituyentes (datos extendidos, figura 4c). El flujo es orientado paralelamente a la línea de puesta a tierra (Fig. 4), con aguas más frías cargadas de agua de deshielo que fluyen hacia el este en la capa superior, mientras que las aguas derivadas de mCDW más cálidas y saladas fluyen hacia el oeste en la capa inferior. La dirección del flujo en la región de la zona de la “mariposa” es fuertemente dirigida por la topografía y no es necesariamente representativa del flujo hacia el oeste generalmente esperado debajo de TEIS. La magnitud de la velocidad, el calor y la mezcla de sal en la plataforma de hielo. La capa límite del océano es difícil de medir y contribuye a la incertidumbre sustancial al modelar el comportamiento futuro de la capa de hielo antártica. Aquí podemos derivar indirectamente la primera estimación de la viscosidad del remolino debajo de TEIS examinando el límite de Ekman, la capa que se forma en la base del hielo. Bajo la influencia de la rotación y tensiones de fricción, la dirección del flujo observada por Icefin gira progresivamente en el sentido de las agujas del reloj a medida que se acerca al límite, generando un flujo transversal en la base del hielo (Fig. 4c). 

Este mismo comportamiento de es observado por el medidor de corriente del pozo pero emerge en función del tiempo como la distancia entre el hielo base y el instrumento aumenta a medida que se derrite el hielo basal. La dirección del  flujo oscila persistentemente en sentido contrario a las agujas del reloj desde el sureste en enero 2020 al noreste en agosto de 2020 (Fig. 3e y datos extendidos Fig. 4b), después de lo cual la profundidad del instrumento excede la profundidad de Ekman y la dirección del flujo ya no se establece principalmente por la distancia desde el Perímetro.

Secciones transversales y perfiles verticales de velocidad y dirección de corriente en el glaciar Thwaites

Figura 4  Secciones transversales y perfiles verticales de velocidad y dirección de corriente.

a,b, Velocidad y dirección del flujo en la región de la zona de puesta a tierra para el transecto T1 (a) y transecto T2 (b) (ver panel insertado en la Fig. 1). Los puntos de datos individuales son coloreados por la velocidad del flujo, con colores azules que indican el flujo hacia el este  y los colores rojos que indican flujo hacia el oeste. La trayectoria del vehículo  está indicada por la línea gris, con la plataforma de hielo y el fondo del mar indicado por la parches de color gris claro y gris oscuro, respectivamente. La línea verde en a marca la ubicación del pozo, y el cuadro morado indica la región de la columna de agua trazada en c. El recuadro en a son vectores de velocidad geográfica coloreados por un flujo de velocidad para los datos combinados de T1 y T2. Los contornos radiales indican flujo velocidad en cm por segundo. Los triángulos en a y b marcan la ubicación de la línea de puesta a tierra histórica ubicaciones estimadas a partir de interferometría satelital en 2011 (blanco) y la estimación aguas abajo más lejana en 2016 (azul). c, u velocidad hacia el este (azul), v velocidad hacia el norte (rojo) y dirección geográfica del flujo dentro de los 14 m del hielo base a unos 2.000 m de la zona de puesta a tierra a lo largo de T1 (recuadro morado en el panel a). Las líneas negras continuas y de puntos discontinuos muestran la u (punto discontinuo) y la v (continua) perfiles de velocidad de un modelo analítico de un límite de Ekman bajo la capa de hielo. 

d, perfil de velocidad promedio coloreado por velocidad de flujo para todos los datos de velocidad entre 1.300 m y 1.800 m desde la zona de puesta a tierra a lo largo del transecto T1 (líneas de puntos negros en el panel a) y entre 1.210 m y 1.580 m desde el zona de conexión a tierra a lo largo del transecto T2 (líneas negras discontinuas en el panel b).

Derretimiento basal de la plataforma de hielo

A pesar de la alta conducción térmica (datos extendidos, Fig. 2a), el derretimiento basal las tasas promedian no más de 2.0–5.4 m por año (Fig. 3c).  Se han observado tasas de fusión basal desde al menos 2019 (Datos extendidos Fig. 5) y probablemente han persistido durante mucho más tiempo en función de la probable tendencia en las condiciones del océano (discutido en más detalle más adelante). La tasa basal de fusión varía entre diferentes lugares y aumenta gradualmente con el tiempo;  tampoco es más alta en la línea de puesta a tierra. Las variaciones espaciales en la tasa de fusión están probablemente asociadas con patrones de flujo locales y la variabilidad en la topografía de la base de la plataforma de hielo, así como la proximidad a la línea de puesta a tierra, donde la más delgada columna de agua, controlada por la fricción con velocidades de corriente más bajas  (Fig. 4) y una conducción térmica más débil (Fig. 2c) restringe la fusión basal.

El derretimiento basal, controlado por la velocidad a la que se mezclan los océanos turbulentos transporta calor y sal verticalmente a la base de la plataforma de hielo a través de la capa límite de la plataforma hielo-océano, está altamente suprimida debajo de TEIS por la fuerte estratificación y el ambiente oceánico inactivo. Se han identificado diferentes regímenes de turbulencia en la capa límite dependiendo de la fuerza relativa de la corriente vertical y la flotabilidad forzamiento: control de cizallamiento bien mezclado, control de flotabilidad estratificada y difusivo-convectiva. Como la capa límite debajo de TEIS está caracterizada por velocidades de corriente débiles (Fig. 4) y fuerte estratificación (Fig. 2a), se excluye el régimen controlado por cizallamiento bien mezclado. El gradiente de temperatura es demasiado débil para sostener una fuerte turbulencia difusión-convección (Datos extendidos Fig. 1b) y por tanto el transporte de calor a través de la capa límite está predominantemente controlado por capas dinámicas estratificadas  de turbulencia.

En este régimen, las velocidades de flujo débiles no pueden generar suficiente turbulencia impulsada por la cizalla para superar la estratificación estable de la base de hielo, que suprime fuertemente el flujo de calor y salinidad verticales a la base del hielo y, en última instancia, la tasa de fusión basal, a pesar del fuerte forzamiento térmico (Fig. 2a). En el régimen de flotabilidad debajo de TEIS, la fusión basal está limitada en gran medida por la densidad de la estratificación y la velocidad de la corriente, que controlan el transporte de calor a la base de hielo, en lugar de por la cantidad de calor disponible. TEIS ya exhibe niveles excesivos de conducción térmica (es decir, hay más calor oceánico disponible que el requerido para mantener la fusión basal) y el aumento de temperatura requerido para impulsar sustancialmente una fusión basal más alta, estas tasas son probablemente inviables. En cambio, el orden de magnitud aumenta en la fusión basal, y solo será impulsada por una aceleración a gran escala en la circulación oceánica o un marcado debilitamiento de la estratificación de la base del hielo. 

El modelo de ecuaciones para la fusión basal de la plataforma de hielo es ampliamente utilizado para generar proyecciones del nivel del mar, sin embargo está formulado exclusivamente para un régimen de turbulencia mixta, en el que la tasa de fusión depende únicamente del producto de la conducción térmica y la velocidad de flujo. Esta formulación no es apropiada para TEIS. Cuando se fuerza con las velocidades de corriente observadas y la conducción térmica, predice tasas de fusión superiores a 14 m por año, con un máximo de 32 m por año, a menudo superando los valores observados en más de un orden de magnitud (Fig. 3c). Esta discrepancia surge a medida que el modelo se aproxima a la transferencia turbulenta de calor y sal a través de la plataforma de hielo-océano en la capa límite usando coeficientes de transferencia que no asumen ninguna influencia de estratificación. Por lo tanto, en el régimen estratificado, se sobreestima sustancialmente la eficiencia del transporte de calor y sal a través de la capa límite y, por lo tanto, predice en exceso la magnitud de  la tasa de fusión basal (Fig. 3c). Además, esta dependencia incorrecta en la conducción térmica y la velocidad del flujo significa que las ecuaciones no pueden simular la variabilidad observada, prediciendo una caída en las tasas de fusión basal a partir de mayo de 2020 en adelante debido a velocidades de corriente más débiles, en contraste con las observaciones (Fig. 3c  y datos extendidos Fig. 4a). Aunque los coeficientes de transferencia en el modelo de ecuaciones podría reformularse para incluir algunas funciones de dependencia de la estratificación, en última instancia, el conocimiento de la estructura vertical de densidad y velocidad a través de la plataforma de la capa límite hielo-océano, el conocimiento del que se carece ampliamente en la actualidad, debe ser incorporado en parametrizaciones más sofisticadas para precisar predecir las tasas de fusión en condiciones estratificadas.

Gran parte de la línea de puesta a tierra actual debajo de TEIS se encuentra en un cresta de lecho rocoso que corre de noreste a suroeste debajo del hielo estante (Datos ampliados Fig. 6a). La profundidad del lecho a lo largo de la línea de puesta a tierra es relativamente constante y generalmente no más profunda que el de la región “mariposa” (Datos extendidos Fig. 6b). Es poco probable que la zona de conexión a tierra de TEIS sea sustancialmente más alta que el valor observado. Las débiles condiciones de fusión basal observadas contrastan con los modelos numéricos, que sugieren que en el TEIS las tasas de fusión basal de la zona de puesta a tierra son un orden de magnitud más altas.

Las modestas tasas de fusión observadas no son representativas del tronco principal del glaciar Thwaites, que se caracteriza por muchos ángulos de talud basal más pronunciados y está asentado sobre un lecho rocoso   a más de 1,000 m por debajo nivel del mar (Datos ampliados Fig. 6b). Como tal, la fusión basal en esta zona podría ser mucho más alta. 

A pesar de la fusión basal débil en toda la zona de puesta a tierra de TEIS, la línea de puesta a tierra se ha retirado rápidamente a una velocidad de 0,6–1,2 km por año  entre 2011 y 2017. Aunque la tasa de retirada es espacialmente variable, la línea de puesta a tierra ha continuado retrocediendo durante el período cubierto por nuestras observaciones de tasa de fusión (2019-2021), alcanzando ampliamente 0,4 km por año en toda la región de la “mariposas”, con un máximo >1,5 km por año (Fig. 1). Así, nuestras observaciones sugieren que la rápida retirada de la línea de puesta a tierra debajo de TEIS desde 2011 probablemente ha sido asociada con tasas de fusión basales relativamente modestas. Efectivamente, ni el aumento en el forzamiento térmico asociado con la puesta a tierra más profunda de 2011 línea (alrededor de 0,7 ° C más alto; datos extendidos Fig. 6c) ni la variabilidad interanual en la profundidad de la termoclina en la bahía de Pine Island, son suficientes para impulsar cambios de orden de magnitud en la fusión basal, en consonancia con el régimen de turbulencia estratificada. La fuerte estratificación observada en la base del hielo que es responsable de suprimir la tasa de derretimiento basal es probablemente muy persistente, mantenida por la entrada de agua de deshielo glacial y descarga subglaciar (Fig. 3b). Al mismo tiempo, hay poca evidencia oceanográfica que sugiera que las velocidades actuales habrían sido mucho mayores en el pasado para erosionar esta estratificación, ya que la región está sujeta a fuerzas de marea débiles, controladas por fricción las columnas de agua cercanas a las líneas de puesta a tierra con una base plana de hielo no son propicias para un flujo rápido. Sin embargo, junto con el derretimiento en la vecindad del punto de fijación hacia el mar de TEIS, incluso la relativamente modesta fusión basal en la zona de puesta a tierra todavía puede forzar un cambio notable en el hielo. Un pequeño aumento en la fusión basal puede crear un gran desequilibrio de fusión que desencadenaría el adelgazamiento inducido por fusión de TEIS y conduce a una reducción del arrastre basal en la línea de puesta a tierra. La reducción de la base debilitaría la tensión trasera impuesta por la plataforma de hielo, lo que resulta en una pérdida de refuerzo y adelgazamiento dinámico del hielo almacenado aguas arriba. 

A medida que este hielo más delgado sale a flote, la línea de conexión a tierra puede retirarse rápidamente hacia el interior y hacia arriba de la pendiente del lecho rocoso. Aunque los modelos de hielo y océano sugieren que las altas tasas de fusión basal debajo del hielo flotante pueden proporcionar un fuerte efecto positivo de retroalimentación para continuar con la retirada, los resultados indican que esta retroalimentación es débil. Sin embargo, la fusión basal sostenida de la zona de puesta a tierra, debilita el refuerzo de la plataforma de hielo y la advección de hielo cada vez más delgado sobre la línea de puesta a tierra continuará condicionando TEIS a una retirada persistente en el futuro, incluso sin una fuerte retroalimentación positiva de fusión basal elevada.

Datos extendidos

 

Perfiles verticales de frecuencia de flotabilidad glaciar Thwaites

Datos extendidos Fig. 1 Perfiles verticales de frecuencia de flotabilidad, relación de densidad y ángulo de Turner. a,b, Perfiles verticales individuales de frecuencia de flotabilidad (N)  (a) y perfil vertical promedio de la relación de densidad (azul) y ángulo de Turner (rojo) (b) recogidos durante 4 días (9 al 12 de enero de 2020) en la zona de puesta a tierra región del glaciar Thwaites (estrella amarilla en la Fig. 1). Se indica la base de hielo por el recuadro gris sombreado y el lecho marino se indica por la línea inclinada hacia atrás.

 

Conducción térmica y tasa de fusión basal del glaciar Thwaites

Datos extendidos Fig. 2 Conducción térmica y tasa de fusión basal de las ecuaciónes modelo de velocidad de fusión. a,b, Serie de tiempo promedio diario de conducción térmica (rojo) (a) y tasa de fusión basal (azul) (b) predicha por la tasa de fusión de las ecuaciones modelo. Las líneas grises en a y b muestran la conducción térmica y tasa de fusión basal corregida por los efectos de la recesión de la base del hielo usando la vertical perfiles de Θ y SA de los datos CTD.

 

Descarga subglacial debajo del glaciar Thwaites

Datos extendidos Fig. 3 Descarga subglacial debajo del glaciar Thwaites. Imagen satelital Landsat 8 del glaciar Thwaites y la ubicación de la perforación (estrella amarilla; 75,207° S, 104,825° W) en la zona de puesta a tierra región 'mariposa' de TEIS. Contornos de color blanco-azul con sombreado de profundidad del lecho en el mar de Amundsen, mientras que los contornos de color verde muestran vías de agua dulce subglaciar y tasa de descarga. Los puntos morados, verdes y naranjas muestran la ubicación de Perfiles de CTD. La línea de costa (negra) y la línea de tierra (púrpura). El área sombreada en azul muestra la ubicación de la región de la zona de conexión a tierra de 2016-2017.  

Velocidad de flujo, dirección y elipses de marea en el glaciar Thwaites
Datos extendidos Fig. 4 Velocidad de flujo, dirección y elipses de marea. a, b, diarios de serie de tiempo promedio de la velocidad del flujo (a) y la dirección geográfica del flujo (b) el medidor de corriente se desplegó a unos 1,5 m por debajo de la base de hielo en la zona de conexión a tierra región del glaciar Thwaites (estrella amarilla en la Fig. 1). Para la dirección de flujo, 0°  indica flujo hacia el norte, 90° indica flujo hacia el este y 150° indica flujo hacia el sur -sureste. c, Amplitud y orientación geográfica de las principales constituyentes de marea diurna (azul) y semidiurna en la ubicación del pozo (estrella amarilla). Las líneas sólidas indican elipses con eje semi-menor positivo (rotación en sentido contrario a las agujas del reloj en el tiempo), mientras que las líneas discontinuas indican elipses con ejes semi-menor negativo (rotación en el tiempo en el sentido de las agujas del reloj). El polígono azul muestra la ubicación de la región de la zona de conexión a tierra de 2016-2017, y el área gris muestra dónde está conectado a tierra el hielo. 

 

Series de tiempo extendidas de la tasa de fusión basal en el glaciar Thwaites

Datos extendidos Fig. 5 Series de tiempo extendidas de la tasa de fusión basal en la ubicación del pozo. Tasa de fusión basal observada (amarillo) en el pozo ubicación (2020; estrella amarilla en la Fig. 1) y una ubicación secundaria 360 m aguas abajo de la ubicación del pozo (2019; rombo amarillo en la Fig. 1) filtrado de paso bajo con  un límite de 15 días trazado frente a la tasa de fusión basal estimada a partir de las ecuaciones modelo de tasa de fusión (gris).

 

Profundidad del lecho rocoso a lo largo de la puesta a tierra del glaciar Thwaites

Datos extendidos Fig. 6  Profundidad del lecho rocoso a lo largo de la puesta a tierra del glaciar Thwaites línea verde. a, imagen Sentinel-2 de TEIS y tronco principal de Thwaites del 9 de febrero de 2019. Los contornos coloreados muestran la profundidad del lecho cuadriculado debajo del hielo a tierra. Datos recopilados sobre el glaciar Thwaites entre el 1 de enero de 2006 y el 31 de diciembre 2012. El área verde indica la ubicación de la zona de puesta a tierra de 2016-2017, mientras que la estrella amarilla indica la ubicación de la perforación. b, perfil de la profundidad del lecho a lo largo de la línea de puesta a tierra actual debajo de TEIS y el tronco principal de Thwaites.  La línea punteada en 106° W marca el límite entre TEIS y el tronco principal de Thwaites. c, Perfiles de base de hielo (gris claro) y fondo marino (gris oscuro) del Transecto Icefin T1. El triángulo blanco marca la ubicación de la puesta a tierra de 2011. Línea de interferometría satelital. 

 

Diagrama de temperatura-salinidad en el glaciar Thwaites

Datos ampliados Fig. 7 Diagrama de temperatura-salinidad y mezcla lineal entre las principales masas de agua debajo de la plataforma de hielo. Líneas de mezcla lineal entre mCDW (recuadro rojo), WW (recuadro azul), MW glacial y SD, junto con Θ– Observaciones SA de cada molde CTD individual (puntos grises) y la plataforma de amarre bajo el hielo (puntos coloreados con indicación temporal). Tener en cuenta que las propiedades de los miembros finales de MW y SD quedan fuera del rango de los ejes. Desde el final de septiembre de 2020 en adelante, las observaciones individuales de Θ–SA se encuentran por encima de la  línea de mezcla mCDW-MW, que indica la presencia de descarga subglaciar y la insignificante influencia de WW.